精英家教網 > 高中數學 > 題目詳情
已知O是坐標原點,點A(-2,1),若點M(x,y)為平面區(qū)域
x+y≥2
x≤1
y≤2
上的一個動點,則
OA
OM
的取值范圍是( 。
A、[0,1]
B、[0,2]
C、[-1,0]
D、[-1,2]
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式組對應的平面區(qū)域,設z=
OA
OM
,求出z的表達式,利用z的幾何意義,利用數形結合即可得到結論.
解答: 解:作出不等式組對應的平面區(qū)域如圖:
z=
OA
OM

∵A(-2,1),M(x,y),
∴z=
OA
OM
=-2x+y,
即y=2x+z,
平移直線y=2x+z,由圖象可知當y=2x+z,經過點A(1,1)時,直線截距最小,此時z最小為z=-2+1=-1.
經過點B(0,2)時,直線截距最大,此時z最大.此時z=2,
即-1≤z≤2,
故選:D.
點評:本題主要考查線性規(guī)劃的應用,根據向量數量積的坐標公式求出z的表達式,利用數形結合是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
3
sinxcosx+sin2x+2(x∈R).
(1)求函數f(x)的單調遞減區(qū)間;
(2)設銳角△ABC的三邊a、b、c所對的角分別是∠A、∠B、∠C,且a=1,f(A)=3,向量
s
=(1,sinB)與向量
t
=(
3
,sinC)共線,求邊b、c的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

設M(x,y)到定點F(
3
,0)的距離和它到直線x=
4
3
3
距離的比是
3
2

(Ⅰ)求點M(x,y)的軌跡方程;
(Ⅱ)O為坐標原點,過F點且斜率為
2
2
的直線,與點M的軌跡交于點A(x1,y1),B(x2,y2),求△AOB的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

設直線l的方程為(a+2)x+y-2-a=0(a∈R)
(1)若直線l在兩坐標軸上的截距相等,求直線l的方程;
(2)若直線l與兩坐標軸圍成的面積是
1
2
,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

設實數列{an}和{bn}分別為等差數列與等比數列,且a1=b1=8,a4=b4=1,則以下結論正確的是( 。
A、a2>b2
B、a3<b3
C、a5>b5
D、a6>b6

查看答案和解析>>

科目:高中數學 來源: 題型:

解不等式組:
x2+2x-3>0
4x2-4x+1≤0

查看答案和解析>>

科目:高中數學 來源: 題型:

若曲線y=x2與y=cx3所圍成的平面圖形面積為
2
3
,則c=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設M(x,y)到定點F(
3
,0)的距離和它到直線x=
4
3
3
距離的比是
3
2

(Ⅰ)求點M(x,y)的軌跡方程;
(Ⅱ)O為坐標原點,斜率為k的直線過F點,且與點M的軌跡交于點A(x1,y1),B(x2,y2),若x1x2+4y1y2=0,求△AOB的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知向量a=(m,-2),b=(4,-2m),條件p:a∥b,條件q:m=2,則p是q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要

查看答案和解析>>

同步練習冊答案