函數(shù)y=
1
2
sin(x-
π
3
)得圖象的一條對(duì)稱軸是直線( 。
A、x=-
π
2
B、x=
π
2
C、x=-
π
6
D、x=
π
6
考點(diǎn):正弦函數(shù)的對(duì)稱性
專題:三角函數(shù)的求值
分析:利用正弦函數(shù)的對(duì)稱軸方程,再令k=-1,即可求得結(jié)論.
解答: 解:由題意,令x-
π
3
=
π
2
+kπ(k∈Z),則x=
6
+kπ(k∈Z),
令k=-1,則x=-
π
6

∴函數(shù)y=
1
2
sin(x-
π
3
)得圖象的一條對(duì)稱軸是直線x=-
π
6

故選C.
點(diǎn)評(píng):本題考查三角函數(shù)的性質(zhì),考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列函數(shù)的值域:y=
x2-2x+2
2x-1
(x>
1
2
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.已知bcosC+ccosB=2acosA.(1)求角A的大;(2)若
AB
AC
=
3
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

畫出下列函數(shù)的圖象.
(1)y=|x+1|+|x-2|
(2)y=x2-2|x|-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
={-1,2,3},
b
={2,b,1}函數(shù)f(x)=-x2+(
a
b
)x+1,x∈[-1,2]
(1)當(dāng)b為何值時(shí),f(x)的最大值為2
(2)若f(x)在[-1,2]上為單調(diào)函數(shù),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,則下列說(shuō)法正確的是(  )
A、函數(shù)f(x)在(-2,3)內(nèi)單調(diào)遞減
B、函數(shù)f(x)在x=3處取極小值
C、函數(shù)f(x)在(-4,0)內(nèi)單調(diào)遞增
D、函數(shù)f(x)在x=4處取極大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=3x,它的反函數(shù)是g(x),a=g(3),b=g(4),c=g(π),則下面關(guān)系式中正確的是( 。
A、a<b<c
B、a<c<b
C、b<c<a
D、b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“若a2>b2,則a>b”的否命題是( 。
A、若a2≤b2則,則a>b
B、若a2<b2,則a<b
C、若a2≤b2則,則a≤b
D、若a2<b2,則a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,BC邊上的高為
3
6
a,則
b
c
+
c
b
最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案