【題目】設函數y=f (x)的定義域為D,如果存在非零常數T,對于任意 x∈D,都有f(x+T)=Tf (x),則稱函數y=f(x)是“似周期函數”,非零常數T為函數y=f( x)的“似周期”.現有下面四個關于“似周期函數”的命題:
①如果“似周期函數”y=f(x)的“似周期”為﹣1,那么它是周期為2的周期函數;
②函數f(x)=x是“似周期函數”;
③函數f(x)=2x是“似周期函數”;
④如果函數f(x)=cosωx是“似周期函數”,那么“ω=kπ,k∈Z”.
其中是真命題的序號是 . (寫出所有滿足條件的命題序號)
【答案】①④
【解析】解:①∵似周期函數”y=f(x)的“似周期”為﹣1,∴f(x﹣1)=﹣f(x),
∴f(x﹣2)=﹣f(x﹣1)=f(x),
故它是周期為2的周期函數,
故正確;
②若函數f(x)=x是“似周期函數”,則f(x+T)=Tf (x),
即x+T=Tx恒成立;
故(T﹣1)x=T恒成立,
上式不可能恒成立;
故錯誤;
③若函數f(x)=2x是“似周期函數”,則f(x+T)=Tf (x),
即2x+T=T2x恒成立;
故2T=T成立,無解;
故錯誤;
④若函數f(x)=cosωx是“似周期函數”,則f(x+T)=Tf (x),
即cos(ω(x+T))=Tcosωx恒成立;
故cos(ωx+ωT)=Tcosωx恒成立;
即cosωxcosωT﹣sinωxsinωT=Tcosωx恒成立,
故 ,
故ω=kπ,k∈Z;
故正確;
所以答案是:①④.
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x),y=g(x)的值域均為R,有以下命題:
①若對于任意x∈R都有f[f(x)]=f(x)成立,則f(x)=x.
②若對于任意x∈R都有f[f(x)]=x成立,則f(x)=x.
③若存在唯一的實數a,使得f[g(a)]=a成立,且對于任意x∈R都有g[f(x)]=x2﹣x+1成立,則存在唯一實數x0 , 使得g(ax0)=1,f(x0)=a.
④若存在實數x0 , y0 , f[g(x0)]=x0 , 且g(x0)=g(y0),則x0=y0 .
其中是真命題的序號是 . (寫出所有滿足條件的命題序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】動物園需要用籬笆圍成兩個面積均為50 的長方形熊貓居室,如圖所示,以墻為一邊(墻不需要籬笆),并共用垂直于墻的一條邊,為了保證活動空間,垂直于墻的邊長不小于2m,每個長方形平行于墻的邊長也不小于2m.
(1)設所用籬笆的總長度為l,垂直于墻的邊長為x.試用解析式將l表示成x的函數,并確定這個函數的定義域;
(2)怎樣圍才能使得所用籬笆的總長度最?籬笆的總長度最小是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , 且a1=a(a∈R),an+1= ,n∈N*;
(1)若0<an≤6,求證:0<an+1≤6;
(2)若a=5,求S2016;
(3)若a= (m∈N*),求S4m+2的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}為等比數列,a4+a7=2,a5a6=-8,則a1+a10=( )
A. 7 B. 5
C. -5 D. -7
【答案】D
【解析】由解得或
∴或,∴a1+a10=a1(1+q9)=-7.選D.
點睛:在解決等差、等比數列的運算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運算,但思路簡潔,目標明確;二是利用等差、等比數列的性質,性質是兩種數列基本規(guī)律的深刻體現,是解決等差、等比數列問題既快捷又方便的工具,應有意識地去應用.但在應用性質時要注意性質的前提條件,有時需要進行適當變形. 在解決等差、等比數列的運算問題時,經常采用“巧用性質、整體考慮、減少運算量”的方法.
【題型】單選題
【結束】
8
【題目】在數列{ }中,已知,,,則等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}的各項均為不等于1的正數,數列{bn}滿足bn=lgan,b3=18,b6=12,則數列{bn}的前n項和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
【答案】C
【解析】
由題意可知,lga3=b3,lga6=b6再由b3,b6,用a1和q表示出a3和b6,進而求得q和a1,根據{an}為正項等比數列推知{bn}為等差數列,進而得出數列bn的通項公式和前n項和,可知Sn的表達式為一元二次函數,根據其單調性進而求得Sn的最大值.
由題意可知,lga3=b3,lga6=b6.
又∵b3=18,b6=12,則a1q2=1018,a1q5=1012,
∴q3=10﹣6.
即q=10﹣2,∴a1=1022.
又∵{an}為正項等比數列,
∴{bn}為等差數列,
且d=﹣2,b1=22.
故bn=22+(n﹣1)×(﹣2)=﹣2n+24.
∴Sn=22n+×(﹣2)
=﹣n2+23n=,又∵n∈N*,故n=11或12時,(Sn)max=132.
故答案為:C.
【點睛】
這個題目考查的是等比數列的性質和應用;解決等差等比數列的小題時,常見的思路是可以化基本量,解方程;利用等差等比數列的性質解決題目;還有就是如果題目中涉及到的項較多時,可以觀察項和項之間的腳碼間的關系,也可以通過這個發(fā)現規(guī)律。
【題型】單選題
【結束】
12
【題目】已知數列是遞增數列,且對,都有,則實數的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設Sn是等差數列{an}的前n項和,已知與的等比中項為,且與的等差中項為1,求數列{an}的通項公式。
【答案】或.
【解析】
設等差數列{an}的首項為a1,公差為d,運用等差中項和等比中項的定義,利用等差數列的求和公式,代入可求a1,d,解方程可求通項an.
設等差數列{an}的首項,公差為,則通項為,
前項和為,依題意有,
其中,由此可得,
整理得, 解方程組得或,
由此得;或.
經檢驗和均合題意.
所以所求等差數列的通項公式為或.
【點睛】
本題主要考查了等差數列的通項公式和性質及等比數列中項的性質,數列通項的求法中有常見的已知和的關系,求表達式,一般是寫出做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用。
【題型】解答題
【結束】
20
【題目】等差數列{an}的各項均為正數,a1=3,前n項和為Sn,{bn}為等比數列,b1=1,且b2S2=64,b3S3=960.
(1)求an與bn;
(2)求
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2﹣ax﹣alnx(a∈R),g(x)=﹣x3+ x2+2x﹣6,g(x)在[1,4]上的最大值為b,當x∈[1,+∞)時,f(x)≥b恒成立,則a的取值范圍( )
A.a≤2
B.a≤1
C.a≤﹣1
D.a≤0
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com