若α、β是兩個(gè)相交平面,則在下列命題中,真命題的序號(hào)為
 
.(寫出所有真命題的序號(hào))
①若直線m⊥α,則在平面β內(nèi),一定不存在與直線m平行的直線.
②若直線m⊥α,則在平面β內(nèi),一定存在無(wú)數(shù)條直線與直線m垂直.
③若直線m?α,則在平面β內(nèi),不一定存在與直線m垂直的直線.
④若直線m?α,則在平面β內(nèi),一定存在與直線m垂直的直線.
考點(diǎn):空間中直線與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用線面垂直的性質(zhì)定理對(duì)四個(gè)命題分別分析解答.
解答: 解:對(duì)于①,若直線m⊥α,如果α,β互相垂直,則在平面β內(nèi),存在與直線m平行的直線.故①錯(cuò)誤;
對(duì)于②,若直線m⊥α,則直線m垂直于平面α內(nèi)的所有直線,則在平面β內(nèi),一定存在無(wú)數(shù)條直線與直線m垂直.故②正確;
對(duì)于③,若直線m?α,則在平面β內(nèi),一定存在與直線m垂直的直線.故③錯(cuò)誤;
對(duì)于④,若直線m?α,則在平面β內(nèi),一定存在與直線m垂直的直線.故④正確;
故答案為:②④.
點(diǎn)評(píng):本題考查了線面垂直的性質(zhì)定理的運(yùn)用判斷直線的位置關(guān)系;關(guān)鍵是熟練運(yùn)用定理,全面考慮.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論中,正確的有
 

(1)垂直于同一條直線的兩條直線平行
(2)垂直于同一直線的兩個(gè)平面平行;
(3)垂直于同一平面的兩條直線平行;
(4)垂直于同一個(gè)平面的兩個(gè)平面平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

logmn=-1,則m+3n最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某艦艇在A處測(cè)得遇險(xiǎn)漁船在北偏東30°、距離為6
3
海里的B處,此時(shí)得知該漁船正在沿正東方向以每小時(shí)6
3
海里的速度航行,艦艇以每小時(shí)18海里的速度去救援,則艦艇追上漁船的最短時(shí)間是(  )
A、30分鐘B、40分鐘
C、50分鐘D、60分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)(1+x)n=a0+a1x+…+anxn,若展開(kāi)式中系數(shù)最大的項(xiàng)的系數(shù)是70,求n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b∈R,則a=-b是a2+b2≥-2ab的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
1
2
cos2x+
3
2
cosxsinx+1,x∈R.
(1)求函數(shù)y的值域,并求出y取得最大值時(shí)x的集合;
(2)寫出該函數(shù)圖象如何由y=sinx(x∈R)的圖象變換得到的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinx+cosx,則f′(
π
4
)
=( 。
A、-
1
2
B、0
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知i是虛數(shù)單位,復(fù)數(shù)z=
1+2i
1+i
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案