已知函數(shù),且f(1)=2
(1)求實數(shù)a的值;
(2)判斷f(x)的奇偶性;
(3)判斷函數(shù)f(x)在(1,+∞)上是增函數(shù)還是減函數(shù)?并用定義證明.
【答案】分析:(1)求實數(shù)a的值,由f(1)=2即可求得;
(2)判斷f(x)的奇偶性可利用f(x)+f(-x)=0證明其為奇函數(shù);
(3)先判斷出其在(1,+∞)上是增函數(shù),再利用定義法證明.
解答:解:(1)由題意f(1)=1+a=2,∴a=1
(2)f(x)是奇函數(shù),因為,故其是奇函數(shù);
(3)函數(shù)f(x)在(1,+∞)上是單調增函數(shù),下用定義法證明
作取x1,x2∈(1,+∞),且x1<x2
f(x1)-f(x2)=x1-x2+=(x1-x2)(1-
∵1<x1<x2,∴x1-x2<0,1->0
∴f(x1)-f(x2)<0
即函數(shù)f(x)在(1,+∞)上是單調增函數(shù),
點評:本題考查函數(shù)的奇偶性與單調性,求解本題的關鍵是掌握函數(shù)奇偶性的判斷方法以及函數(shù)單調性的證明方法定義法.屬于考查基本概念的題型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年安徽省黃山市屯溪一中高三(上)第三次月考數(shù)學試卷(文科)(解析版) 題型:解答題

已知函數(shù),且f(1)=log162,f(-2)=1.
(1)求函數(shù)f(x)的表達式;
(2)若數(shù)列xn的項滿足xn=[1-f(1)]•[1-f(2)]•…•[1-f(n)],試求x1,x2,x3,x4;
(3)猜想數(shù)列xn的通項,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年浙江省舟山市岱山縣大衢中學高一(上)期中數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),且f(1)=2,
(1)求a、b的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)判斷f(x)在(1,+∞)上的單調性并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省阜陽三中高一(上)第一次調研數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),且f(1)=2,
(1)求a、b的值;
(2)判斷f(x)在(1,+∞)上的單調性并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省南昌外國語學校高三(上)11月月考數(shù)學試卷(理科)(解析版) 題型:解答題

已知函數(shù),且f(1)=1,f(-2)=4.
(1)求a、b的值;
(2)已知定點A(1,0),設點P(x,y)是函數(shù)y=f(x)(x<-1)圖象上的任意一點,求|AP|的最小值,并求此時點P的坐標;
(3)當x∈[1,2]時,不等式恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省中山實驗高中高一(上)10月段考試數(shù)學試卷(解析版) 題型:解答題

已知函數(shù),且f(1)=3
(I)求a的值;
(II)判斷函數(shù)的奇偶性;
(III)判斷函數(shù)f(x)在(1,+∞)上是增函數(shù)還是減函數(shù)?并證明.

查看答案和解析>>

同步練習冊答案