已知sinθ<0,tanθ>0,則
1-sin2θ
化簡(jiǎn)的結(jié)果為( 。
A、cosθB、-cosθ
C、±cosθD、以上都不對(duì)
分析:利用題設(shè)條件可推斷出θ為第三象限角,進(jìn)而利用同角三角函數(shù)的基本關(guān)系求得答案.
解答:解:∵sinθ<0,tanθ>0
∴θ為第三象限角
1-sin2θ
=|cosθ|=-cosθ
故選B
點(diǎn)評(píng):本題主要考查了三角函數(shù)值的符合和象限角的問題.考查了基礎(chǔ)知識(shí)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα,cosα是方程25x2-5(2t+1)x+t2+t=0的兩根且α為銳角,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα,cosα是方程25x2-5(2t+1)x+t2+t=0的兩根,且α為銳角.
(1)求t的值;
(2)求以
1
sinα
 , 
1
cosα
為兩根的一元二次方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a>0,函數(shù)f(x)=
sin
π
2
x,x∈[-1,0)
ax2+ax+1,x∈[0,+∞)
,若f(t-
1
3
)>-
1
2
,則實(shí)數(shù)t的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們可以證明:已知sinθ=t(|t|≤1),則sin
θ
2
至多有4個(gè)不同的值.
(1)當(dāng)t=
3
2
時(shí),寫出sin
θ
2
的所有可能值;
(2)設(shè)實(shí)數(shù)t由等式log
1
2
2
(t+1)+a•log
1
2
(t+1)+b=0
確定,若sin
θ
2
總共有7個(gè)不同的值,求常數(shù)a、b的取值情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)在平面直角坐標(biāo)系xOy中,判斷曲線C:
x=2cosθ
y=sinθ
(θ為參數(shù))與直線l:
x=1+2t
y=1-t
(t為參數(shù))是否有公共點(diǎn),并證明你的結(jié)論.
(2)已知a>0,b>0,a+b=1,求證:
1
2a+1
+
4
2b+1
9
4

查看答案和解析>>

同步練習(xí)冊(cè)答案