精英家教網 > 高中數學 > 題目詳情

已知四邊形ABCD是等腰梯形,AB=3,DC=1,∠BAD=45°,DE⊥AB(如圖1)。現(xiàn)將△ADE沿DE折起,使得AE⊥EB(如圖2),連結AC,AB,設M是AB的中點。

   (I)求證:BC⊥平面AEC;

   (II)求二面角C―AB―E的正切值;

   (III)判斷直線EM是否平行于平面ACD,并說明理由。

證:(I)在圖1中,過C作CF⊥EB,

∵DE⊥EB,∴四邊形CDEF是矩形,

∵CD=1,∴EF=1。

∵四邊形ABCD是等腰梯形,AB=3。

∴AE=BF=1。

∵∠BAD=45°,∴DE=CF=1。

連結CE,則CE=CB=

∵EB=2,∴∠BCE=90°。

則BC⊥CE。                                                                                     

在圖2中,∵AE⊥EB,AE⊥ED,EB∩ED=E,

∴AE⊥平面BCDE。

∵BC平面BCDE,∴AE⊥BC。                                                      

∵AE∩CE=E,∴BC⊥平面AEC。                                                     

   (II)∵AE⊥平面BCDE,CF平面BCDE。

∴AE⊥CF。

∴CF⊥平面ABE。

過C作CG⊥AB,連結FG,則∠CGF就是二面角C―AB―E的平面角。

又CF=1,AE=1,CE=BC=。

∴AC=

在Rt△ACB中,AB=

又AC?BC=AB?CG,∴CG=

∴FG=

∴二面角C―AB―E的正切值為                                        

   (III)用反證法。

假設EM∥平面ACD。                                                                       

∵EB∥CD,CD平面ACD,EB平面ACD,

∴EB∥平面ACD!逧B∩EM=E,∴面AEB∥面ACD                         

而A∈平面AEB,A∈平面ACD,

與平面AEB//平面ACD矛盾。

∵假設不成立。

∴EM與平面ACD不平行。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

17、如圖,已知四邊形ABCD 是矩形,PA⊥平面ABCD,M,N分別是AB,PC的中點.
(1)求證:MN∥平面PAD;
(2)求證:MN⊥DC.

查看答案和解析>>

科目:高中數學 來源: 題型:

某城市計劃在如圖所示的空地ABCD上豎一塊長方形液晶廣告屏幕MNEF,宣傳該城市未來十年計劃、目標等相關政策.已知四邊形ABCD是邊長為30m的正方形,電源在點P處,點P到邊AD、AB的距離分別為9m,3m,且MN~NE=16~9,線段MN必過點P,端點M、N分別在邊AD、AB上,設AN=xm,液晶廣告屏幕MNEF的面積為Sm2
(1)求S關于x的函數關系式及其定義域;
(2)若液晶屏每平米造價為1500元,當x為何值時,液晶廣告屏幕MNEF的造價最低?

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知四邊形ABCD是菱形,PA⊥平面ABCD,PA=AB=BD=2,AC與BD交于E點,F(xiàn)是PD的中點.
(1)求證:PB∥平面AFC;
(2)求多面體PABCF的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖:已知四邊形ABCD是邊長為4的正方形,E、F分別是AB,AD的中點,GC垂直于ABCD所在平面,且GC=2.
(1)求異面直線BC與GE所成的角的余弦值;
(2)求平面CBG與平面BGD的夾角的余弦值;
(3)求三棱錐D-GEF的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知四邊形ABCD是空間四邊形,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點,求證:四邊形EFGH是平行四邊形.

查看答案和解析>>

同步練習冊答案