已知F1(-1,0),F(xiàn)2(1,0)為平面內(nèi)的兩個(gè)定點(diǎn),動(dòng)點(diǎn)P滿足,記點(diǎn)P的軌跡為曲線Γ.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A,B,C是曲線Γ上的不同三點(diǎn),且
(。┰囂骄浚褐本AB與OC的斜率之積是否為定值?證明你的結(jié)論;
(ⅱ)當(dāng)直線AB過點(diǎn)F1時(shí),求直線AB、OC與x軸所圍成的三角形的面積.
【答案】分析:(Ⅰ)根據(jù)橢圓的定義,可知點(diǎn)P的軌跡是以F1(1,0),F(xiàn)2(-1,0)為焦點(diǎn)的橢圓,進(jìn)而可得曲線Γ的方程;
(Ⅱ)將轉(zhuǎn)化為坐標(biāo)之間的關(guān)系.(ⅰ)設(shè)直線AB的方程代入橢圓方程并整理,利用韋達(dá)定理,確定點(diǎn)C的坐標(biāo),利用斜率公式可得直線AB與OC的斜率之積為定值;(ⅱ)先判斷直線AB的斜率存在,確定點(diǎn)C的坐標(biāo)代入橢圓方程,可求k的值,進(jìn)而分類求出直線AB、OC與x軸所圍成的三角形的面積.
解答:解:(Ⅰ)由條件可知,點(diǎn)P到兩定點(diǎn)F1(1,0),F(xiàn)2(-1,0)的距離之和為定值
所以點(diǎn)P的軌跡是以F1(1,0),F(xiàn)2(-1,0)為焦點(diǎn)的橢圓.…(2分)
,c=1,所以b=1,
故所求方程為.…(4分)
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),C(x3,y3).
,得x1+x2+x3=0,y1+y2+y3=0.…(5分)
(。┛稍O(shè)直線AB的方程為y=kx+n(k≠0),
代入x2+2y2=2并整理得,(1+2k2)x2+4knx+2n2-2=0,
依題意,△>0,則 ,
從而可得點(diǎn)C的坐標(biāo)為,
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131025122902237881222/SYS201310251229022378812018_DA/9.png">,所以直線AB與OC的斜率之積為定值.…(8分)
(ⅱ)若AB⊥x軸時(shí),,由,
得點(diǎn)C(2,0),所以點(diǎn)C不在橢圓Γ上,不合題意.
因此直線AB的斜率存在.…(9分)
由(。┛芍,當(dāng)直線AB過點(diǎn)F1時(shí),有n=k,點(diǎn)C的坐標(biāo)為
代入x2+2y2=2得,,即4k2=1+2k2,
所以.                   …(11分)
(1)當(dāng)時(shí),由(。┲,從而
故AB、OC及x軸所圍成三角形為等腰三角形,其底邊長為1,且底邊上的高,所求等腰三角形的面積
(2)當(dāng)時(shí),又由(。┲,從而,
同理可求直線AB、OC與x軸所圍成的三角形的面積為
綜合(1)(2),直線AB、OC與x軸所圍成的三角形的面積為.…(13分)
點(diǎn)評:本小題考查橢圓的標(biāo)準(zhǔn)方程與性質(zhì)、直線與圓錐曲線的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0),A(
1
2
,0),動(dòng)點(diǎn)P滿足3
PF1
PA
+
PF2
PA
=0.
(1)求動(dòng)點(diǎn)P的軌跡方程.
(2)是否存在點(diǎn)P,使PA成為∠F1PF2的平分線?若存在,求出P點(diǎn)坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0),點(diǎn)p滿足|
PF
1
|+|
PF
2
|=2
2
,記點(diǎn)P的軌跡為E.
(Ⅰ)求軌跡E的方程;
(Ⅱ)過點(diǎn)F2(1,0)作直線l與軌跡E交于不同的兩點(diǎn)A、B,設(shè)
F2A
F2B
,T(2,0),,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0)為橢圓
x2
a2
+
y2
b2
=1
的兩個(gè)焦點(diǎn),若橢圓上一點(diǎn)P滿足|
PF1
|+|
PF2
|=4
,則橢圓的離心率e=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0)、F2(1,0)為橢圓的焦點(diǎn),且直線x+y-
7
=0
與橢圓相切.
(Ⅰ)求橢圓方程;
(Ⅱ)過F1的直線交橢圓于A、B兩點(diǎn),求△ABF2的面積S的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1(-1,0),F(xiàn)2(1,0)是橢圓
x2
a2
+
y2
b2
=1的兩個(gè)焦點(diǎn),點(diǎn)G與F2關(guān)于直線l:x-2y+4=0對稱,且GF1與l的交點(diǎn)P在橢圓上.
(I)求橢圓方程;
(II)若P、M(x1,y1),N(x2,y2)是橢圓上的不同三點(diǎn),直線PM、PN的傾斜角互補(bǔ),問直線MN的斜率是否是定值?如果是,求出該定值,如果不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案