分析 (1)線(xiàn)面平行轉(zhuǎn)化證明線(xiàn)線(xiàn)平面即可.記AC∩BD=M,連FM,則M為AC的中點(diǎn);證明FM∥AE,可證AE∥平面BFD;
(2)多面體ABCDE的表面積各面的面積之和.根據(jù)題設(shè)各邊長(zhǎng)計(jì)算即可.
解答 (1)證明:如圖,記AC∩BD=M,連FM,則M為AC的中點(diǎn);
而B(niǎo)F⊥平面ACE,
∴BF⊥CE,
在△BCE中,∵BE=BC,∴F為CE的中點(diǎn);
從而FM是△ACE的中位線(xiàn),所以FM∥AE,
又FM?平面DBF,AE?平面DBF,
∴AE∥平面BFD;
(2)由題意:由BF⊥平面ACE,
∴AE⊥BF;
∵BC⊥平面ABE,
∴AE⊥BC,AE⊥平面BEC,AE⊥BE,
因此△ABE為直角三角形,所以$AB=2\sqrt{2}$,
而$CE=2\sqrt{2},DE=2\sqrt{2}$,所以△CDE為正三角形.
所以多面體ABCDE的表面積SABCD+S△ESC+S△CFD+SAEFD=$\frac{1}{2}×2×2×3+\frac{{\sqrt{3}}}{4}×{({2\sqrt{2}})^2}+2×2\sqrt{2}=6+2\sqrt{3}+4\sqrt{2}$.
點(diǎn)評(píng) 本題考查了線(xiàn)面平行的證明和多面體ABCDE的表面積的計(jì)算.屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{2}$ | C. | 3 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -2 | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com