【題目】已知函數(shù),且.
(1)討論函數(shù)的單調(diào)性;
(2)若,求證:函數(shù)有且只有一個(gè)零點(diǎn).
【答案】(1)見解析;(2)見解析.
【解析】試題分析:(1)通過導(dǎo)函數(shù)當(dāng)和時(shí)的正負(fù)來確定原函數(shù)的增減區(qū)間;
(2) 通過證明函數(shù)單調(diào)并且猜出函數(shù)的一個(gè)根,從而證明函數(shù)有且只有一個(gè)零點(diǎn).
試題解析:
(1),,
當(dāng)時(shí),,則在上單調(diào)遞增;
當(dāng)時(shí),由得,由得,
即在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.
(2)證明:由已知得,則,
設(shè),則 ,
故為上的增函數(shù),
又由于,因此且有唯一零點(diǎn)1,
當(dāng)時(shí),;當(dāng)時(shí),.
在上為減函數(shù),在上為增函數(shù),
函數(shù)有且只有一個(gè)零點(diǎn).
點(diǎn)晴:本題主要考查導(dǎo)數(shù)在解決函數(shù)中的應(yīng)用. 解答此類問題,應(yīng)該首先確定函數(shù)的定義域,否則,寫出的單調(diào)區(qū)間易出錯(cuò). 解決含參數(shù)問題及不等式問題注意兩個(gè)轉(zhuǎn)化:(1)利用導(dǎo)數(shù)解決含有參數(shù)的單調(diào)性問題可將問題轉(zhuǎn)化為含參不等式的求解問題,要注意分類討論和數(shù)形結(jié)合思想的應(yīng)用.(2)函數(shù)有且只有一個(gè)零點(diǎn)通常是證明函數(shù)單調(diào)并且猜出函數(shù)的一個(gè)根,從而證明函數(shù)有且只有一個(gè)零點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此做了四次試驗(yàn),得到的數(shù)據(jù)如下表所示:
零件的個(gè)數(shù)x/個(gè) | 2 | 3 | 4 | 5 |
加工的時(shí)間y/h | 2.5 | 3 | 4 | 4.5 |
(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(2)求出y關(guān)于x的線性回歸方程,并在坐標(biāo)系中畫出回歸直線;
(3)試預(yù)測(cè)加工10個(gè)零件需要多少時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(1)判斷函數(shù)在和的單調(diào)性,并用定義證明在上的單調(diào)性;
(2)若函數(shù)是定義域?yàn)?/span>的偶函數(shù),且時(shí), ,
①當(dāng)時(shí),寫出的表達(dá)式;
②若函數(shù)有四個(gè)零點(diǎn),寫出的取值范圍(不需要說明理由).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F,P,Q,M,N分別是棱AB,AD,DD1,BB1,A1B1,A1D1的中點(diǎn).求證:
(1)直線BC1∥平面EFPQ.
(2)直線AC1⊥平面PQMN.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)通過調(diào)查問卷(滿分50分)的形式對(duì)本企業(yè)900名員工的工作滿意度進(jìn)行調(diào)查,并隨機(jī)抽取了其中30名員工(其中16名女員工,14名男員工)的得分,如下表:
女 | 47 36 32 48 34 44 43 47 46 41 43 42 50 43 35 49 |
男 | 37 35 34 43 46 36 38 40 39 32 48 33 40 34 |
(Ⅰ)現(xiàn)求得這30名員工的平均得分為40.5分,若規(guī)定大于平均得分為“滿意”,否則為“不滿意”,請(qǐng)完成下列表格:
“滿意”的人數(shù) | “不滿意”的人數(shù) | 合計(jì) | |
女 | 16 | ||
男 | 14 | ||
合計(jì) | 30 |
(Ⅱ)根據(jù)上述表中數(shù)據(jù),利用獨(dú)立性檢驗(yàn)的方法判斷,能否在犯錯(cuò)誤的概率不超過1%的前提下,認(rèn)為該企業(yè)員工“性別”與“工作是否滿意”有關(guān)?
參考數(shù)據(jù):
0.10 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】.如圖,在三棱錐V-ABC中,VO⊥平面ABC,O∈CD,VA=VB,AD=BD,則下列結(jié)論中不一定成立的是 ( )
A. AC=BC
B. VC⊥VD
C. AB⊥VC
D. S△VCD·AB=S△ABC·VO
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓: 過橢圓: ()的短軸端點(diǎn), , 分別是圓與橢圓上任意兩點(diǎn),且線段長度的最大值為3.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)作圓的一條切線交橢圓于, 兩點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小五、小一、小節(jié)、小快、小樂五位同學(xué)站成一排,若小一不出現(xiàn)在首位和末位,小五、小節(jié)、小樂中有且僅有兩人相鄰,求能滿足條件的不同排法共有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知每一項(xiàng)都是正數(shù)的數(shù)列滿足, .
(1)用數(shù)學(xué)歸納法證明: ;
(2)證明: ;
(3)記為數(shù)列的前項(xiàng)和,證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com