1.(1)計算:[(-2)10]${\;}^{\frac{1}{2}}$+(-1)0+2${\;}^{-2+lo{g}_{2}3}$+$\root{3}{(-\frac{3}{4})^{3}}$;
(2)已知角α終邊上一點P(-4a,3a),a≠0,求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$的值.

分析 (1)先計算指數(shù)冪、化簡三次根式,然后計算加減法;
(2)利用誘導(dǎo)公式進行化簡求值.

解答 解:(1)原式=${2^5}+1+\frac{3}{4}-\frac{3}{4}=33$(5分)
(2)$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$
=$\frac{-sinα•sinα}{-sinα•cosα}$=tanα.
∵角α終邊上一點P(-4a,3a),a≠0,
∴$tanα=-\frac{3}{4}$.

點評 本題考查了三角函數(shù)的化簡求值和對數(shù)的運算性質(zhì),考查學(xué)生的計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a,b,c分別為△ABC內(nèi)角A,B,C的對邊,2cosC(acosB+bcosA)=c.
(1)求:C.
(2)若c=$\sqrt{7$,S△ABC=$\frac{{3\sqrt{3}}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.求直線l:x+y-5=0和圓C:x2+y2-4x+6y-12=0的位置關(guān)系(  )
A.相離B.相切C.相交D.過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知a、b、c、d∈R,“a+c>b+d”是“a>b,c>d”的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.當(dāng)$-\frac{π}{2}≤x≤π$時,函數(shù)$f(x)=sinx+\sqrt{3}cosx$的( 。
A.最大值是1,最小值是$-\sqrt{3}$B.最大值是1,最小值是-1
C.最大值是2,最小值是$-\sqrt{3}$D.最大值是2,最小值是-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.遞增數(shù)列{an}是等差數(shù)列,a2=4,a4+a6=20.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列$\left\{{\frac{4}{{{a_n}{a_{n+1}}}}}\right\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.下列幾個命題:
①方程x2+(a-3)x+a=0有一個正實根,一個負實根,則a<0;
②f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=2x2+x-1,則x≥0時,f(x)=-2x2+x+1;
③函數(shù)$y=\frac{{3-{2^x}}}{{{2^x}+2}}$的值域是$({-1,\frac{3}{2}})$;
④正四面體 A-BCD的內(nèi)切球體積為V1,外接球體積為V2,則$\frac{V_1}{V_2}=\frac{1}{27}$.
其中正確的有①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)m∈R,則“m=-1”是“直線l1:(m-1)x-y+1-2m=0和l2:2x+(m+2)y+12=0平行”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知圓M:x2+y2-4y=0,圓N:(x-1)2+(y-1)2=1,則圓M與圓N的公切線條數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案