分析 ①由題意可得:$\left\{\begin{array}{l}{△=(a-3)^{2}-4a>0}\\{a<0}\end{array}\right.$,解出a,即可判斷出結(jié)論;
②x=0時(shí),f(0)=0,即可判斷出正誤;
③變形:函數(shù)$y=\frac{{3-{2^x}}}{{{2^x}+2}}$=$\frac{5-(2+{2}^{x})}{2+{2}^{x}}$=$\frac{5}{2+{2}^{x}}$-1,由2x>0,可得$\frac{1}{2+{2}^{x}}$∈$(0,\frac{1}{2})$,進(jìn)而得出值域.
④不妨設(shè)正四面體 A-BCD的棱長(zhǎng)為2,內(nèi)切球的半徑為r,外接球的半徑為R,利用三棱錐體積計(jì)算公式可得:解得r,R.即可判斷出結(jié)論.
解答 解:①方程x2+(a-3)x+a=0有一個(gè)正實(shí)根,一個(gè)負(fù)實(shí)根,∴$\left\{\begin{array}{l}{△=(a-3)^{2}-4a>0}\\{a<0}\end{array}\right.$,解得a<0,故①正確;
②f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=2x2+x-1,則x=0時(shí),f(0)=0;
x>0時(shí),-x<0,f(-x)=2x2-x-1,則f(x)=-f(-x)=-2x2+x+1,故②不正確.
③函數(shù)$y=\frac{{3-{2^x}}}{{{2^x}+2}}$=$\frac{5-(2+{2}^{x})}{2+{2}^{x}}$=$\frac{5}{2+{2}^{x}}$-1,∵2x>0,∴$\frac{1}{2+{2}^{x}}$∈$(0,\frac{1}{2})$,∴y∈$({-1,\frac{3}{2}})$,故③正確.
④不妨設(shè)正四面體 A-BCD的棱長(zhǎng)為2,內(nèi)切球的半徑為r,外接球的半徑為R,則$\frac{1}{3}×$$\frac{\sqrt{3}}{4}$×22•r×4=$\frac{1}{3}×\frac{\sqrt{3}}{4}×{2}^{2}$×$\sqrt{{2}^{2}-(\frac{2\sqrt{3}}{3})^{2}}$,$(\sqrt{{2}^{2}-(\frac{2\sqrt{3}}{3})^{2}}-R)^{2}$+$(\frac{2\sqrt{3}}{3})^{2}$=R2,解得r=$\frac{1}{\sqrt{6}}$,R=$\frac{3}{\sqrt{6}}$.則$\frac{{V}_{1}}{{V}_{2}}$=$(\frac{r}{R})^{3}$=$\frac{1}{27}$,
故④正確.
故答案為:①③④.
點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性單調(diào)性、一元二次方程的方程的實(shí)數(shù)根與判別式的關(guān)系、正四面體與正三角形的性質(zhì)、三棱錐的體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -12,-5 | B. | -12,4 | C. | -13,4 | D. | -10,6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
參賽選手成績(jī)所在區(qū)間 | (40,50] | (50,60) |
每名選手能夠進(jìn)入第二輪的概率 | $\frac{1}{2}$ | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{9}$ | B. | $\frac{4}{25}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com