已知等差數(shù)列{an}的前n項和為Sn,且a3+3a6+a9=15,則S11等于( )
A.78
B.66
C.55
D.33
【答案】分析:由數(shù)列{an}為等差數(shù)列,把已知等式左邊的第一項和第三項結合,利用等差數(shù)列的性質化簡,得到關于a6的方程,求出方程的解得到a6的值,然后利用等差數(shù)列的求和公式表示出S11,并利用等差數(shù)列的性質化簡后,將a6的值代入即可求出值.
解答:解:∵等差數(shù)列{an},
∴a3+a9=2a6,又a3+3a6+a9=15,
∴5a6=15,即a6=3,
又a1+a11=2a6,
則S11==11a6=33.
故選D
點評:此題考查了等差數(shù)列的性質,以及等差數(shù)列的求和公式,熟練掌握性質及公式是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項公式;     
(2)求數(shù)列{|an|}的前n項和;
(3)求數(shù)列{
an2n-1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若{an}為遞增數(shù)列,請根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習冊答案