(本題滿分16分)如圖,在六面體中,,,.
求證:(1);(2).
(1)取線段的中點(diǎn),連結(jié)、,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013060309403013602795/SYS201306030948320764952536_DA.files/image005.png">,
所以,又,平面,所以平面.而平面,所以.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013060309403013602795/SYS201306030948320764952536_DA.files/image015.png">,平面,平面,所以平面.
又平面,平面平面,所以.同理得,所以
【解析】
試題分析:(1)取線段的中點(diǎn),連結(jié)、,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013060309403013602795/SYS201306030948320764952536_DA.files/image005.png">,
所以,又,平面,所以平面.而平面,所以.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013060309403013602795/SYS201306030948320764952536_DA.files/image015.png">,平面,平面,所以平面.
又平面,平面平面,所以.同理得,所以
考點(diǎn):本題考查了空間中的線面關(guān)系
點(diǎn)評(píng):高考中的立體幾何問題主要是探求和證明空間幾何體中的平行和垂直關(guān)系以及空間角、體積等計(jì)算問題.對(duì)于平行和垂直問題的證明或探求,其關(guān)鍵是把線線、線面、面面之間的關(guān)系進(jìn)行靈活的轉(zhuǎn)化
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分)如圖:AD=2,AB=4的長(zhǎng)方形所在平面與正所在平面互相垂直,分別為的中點(diǎn).
(1)求四棱錐-的體積;
(2)求證:平面;
(3)試問:在線段上是否存在一點(diǎn),使得平面平面?若存在,試指出點(diǎn)的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江蘇省高二9月份質(zhì)量檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分16分)
如圖,橢圓C:+=1(a>b>0)的焦點(diǎn)F1,F(xiàn)2和短軸的一個(gè)端點(diǎn)A構(gòu)成等邊三角形,
點(diǎn)(,)在橢圓C上,直線l為橢圓C的左準(zhǔn)線.
(1) 求橢圓C的方程;
(2) 點(diǎn)P是橢圓C上的動(dòng)點(diǎn),PQ ⊥l,垂足為Q.
是否存在點(diǎn)P,使得△F1PQ為等腰三角形?
若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省無(wú)錫市高三上學(xué)期期中考試數(shù)學(xué)(解析版) 題型:解答題
(本題滿分16分)
如圖為河岸一段的示意圖,一游泳者站在河岸的A點(diǎn)處,欲前往河對(duì)岸的C點(diǎn)處。若河寬BC為100m,A、B相距100m,他希望盡快到達(dá)C,準(zhǔn)備從A步行到E(E為河岸AB上的點(diǎn)),再?gòu)腅游到C。已知此人步行速度為v,游泳速度為0.5v。
(I)設(shè),試將此人按上述路線從A到C所需時(shí)間T表示為的函數(shù);并求自變量 取值范圍;
II)當(dāng)為何值時(shí),此人從A經(jīng)E游到C所需時(shí)間T最小,其最小值是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆上海市高二年級(jí)期終考試數(shù)學(xué) 題型:解答題
(本題滿分16分)
如圖,在四棱錐中,底面是矩形.已知.
(1)證明平面;
(2)求異面直線與所成的角的大小;
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年新疆農(nóng)七師高級(jí)中學(xué)高一第二學(xué)期第二階段考試數(shù)學(xué)試題 題型:解答題
(本題滿分16分)如圖,已知點(diǎn)是正方形所在平面外一點(diǎn),平面,,點(diǎn)、分別在線段、上,滿足.
(1)求與平面所成的角的大;
(2)求平面PBD與平面ABCD所成角的正切值。
(3)求證:;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com