分析 將棱柱的側(cè)面展開,可將問題轉(zhuǎn)化為平面兩點(diǎn)之間線段最短問題,根據(jù)棱柱的底面邊長和側(cè)棱長,結(jié)合勾股定理可得答案.
解答 解:將三棱柱的三個(gè)側(cè)面展開,如圖所示由圖可知,線段A(A1)即為蟲子爬行的最短距離.
∵三棱柱的底面是邊長為2的正三角形,側(cè)棱CC1=3,
∴A(A1)=$\sqrt{(2×3)^{2}+{3}^{2}}$=3$\sqrt{5}$,CN的高度h=$\sqrt{4+4}$=2$\sqrt{2}$.
點(diǎn)評 本題考查的知識點(diǎn)是多面體表面上的最短距離,將側(cè)面展開,將問題轉(zhuǎn)化為平面兩點(diǎn)之間線段最短問題,是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2-2x | B. | x2-4x+1 | C. | $\frac{{x}^{2}}{4}-\frac{3}{2}x+\frac{5}{4}$ | D. | $\frac{{x}^{2}}{4}-\frac{3}{2}x$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 0 | C. | -3 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com