分析 由已知可得sin[(α-β)+β]=3sin[(α-β)-β],利用兩角和與差的正弦函數(shù)公式,同角三角函數(shù)基本關系式可得tan(α-β)=2tanβ,由此化簡所求即可得解.
解答 解:∵sinα=3sin(α-2β),
∴sin[(α-β)+β]=3sin[(α-β)-β],
∴sin(α-β)cosβ+cos(α-β)sinβ=3sin(α-β)cosβ-3cos(α-β)sinβ,
∴-2cos(α-β)sinβ=sin(α-β)cosβ,
∴tan(α-β)=2tanβ,
∴tan(α-β)+2tanβ=2tanβ+2tanβ=4tanβ.
故答案為:4tanβ.
點評 本題主要考查了兩角和與差的正弦函數(shù)公式,同角三角函數(shù)基本關系式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $f(x)=3sin({\frac{x}{2}-\frac{π}{2}})$ | B. | $f(x)=3sin({\frac{x}{2}+\frac{π}{4}})$ | C. | f(x)=-3sinx | D. | f(x)=3cos2x |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 是奇函數(shù) | B. | 是偶函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 是增函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com