3.有一段演繹推理是這樣的“所有邊長(zhǎng)都相等的多邊形為凸多邊形,菱形是所有邊長(zhǎng)都相等的凸多邊形,所有菱形是正多邊形”結(jié)論顯然是錯(cuò)誤的,是因?yàn)椋ā 。?table class="qanwser">A.大前提錯(cuò)誤B.小前提錯(cuò)誤C.推理形式錯(cuò)誤D.非以上錯(cuò)誤

分析 在使用三段論推理證明中,如果命題是錯(cuò)誤的,則可能是“大前提”錯(cuò)誤,也可能是“小前提”錯(cuò)誤,也可能是推理形式錯(cuò)誤.

解答 解:大前提:所有邊長(zhǎng)都相等的多邊形為凸多邊形,
小前提:菱形是所有邊長(zhǎng)都相等的凸多邊形,
結(jié)論:所有菱形是正凸多邊形,
因此:推理形式錯(cuò)誤
故選:C.

點(diǎn)評(píng) 本題是一個(gè)簡(jiǎn)單的演繹推理,這種問題不用進(jìn)行運(yùn)算,只要根據(jù)所學(xué)的知識(shí)點(diǎn),判斷這種說法是否正確,是一個(gè)基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)y=$\frac{1}{3}$x3-x+c的圖象與x軸恰有兩個(gè)公共點(diǎn),則c=( 。
A.$±\frac{2}{3}$B.$\frac{4}{3}$或$\frac{2}{3}$C.-1或1D.$-\frac{4}{3}$或$-\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)y=sin(ωx+φ)(ω>0,0<φ≤$\frac{π}{2}$)的部分圖象如圖所示,則cos(5ωφ)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.不等式$\frac{x}{x-1}$≥-1的解集為(  )
A.(-∞,$\frac{1}{2}$]∪(1,+∞)B.[$\frac{1}{2}$,+∞)C.[$\frac{1}{2}$,1)∪(1,+∞)D.(-∞,$\frac{1}{2}$]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.不等式$\frac{2}{x-1}$≥1的解集(1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.不等式$\frac{x-1}{x}$>1的解集為(-∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的三個(gè)頂點(diǎn)是A(4,0),B(6,5),C(0,3).
(1)求BC邊上的高所在直線的方程;
(2)求BC邊上的中線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn表示數(shù)列{an}的前n項(xiàng)的和,且$2{S_n}=a_n^2+{a_n}$
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知a,t為正實(shí)數(shù),函數(shù)f(x)=x2-2x+a,且對(duì)任意的x∈[0,t]都有f(x)∈[-a,a].若對(duì)每一個(gè)正實(shí)數(shù)a,記t的最大值為g(a),則$g(1)+g(\frac{3}{8})$=$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案