【題目】已知數(shù)列滿足,.

(1)求數(shù)列的通項公式;

(2)求數(shù)列的前項和

(3)設數(shù)列滿足,其中.記的前項和為.是否存在正整數(shù),使得成立?若存在,請求出所有滿足條件的;若不存在,請說明理由.

【答案】(1);(2;(3),見解析

【解析】

1)由條件,可得,從而可得{}是公比為的等比數(shù)列,由此可求數(shù)列{an}的通項公式;

2由數(shù)列的錯位相減法求和,以及等比數(shù)列的求和公式,可得所求和.

(3)先通過列舉法寫出{Sn}的前8項,再對mn的奇偶分類討論,利用{Sn}的單調(diào)性來說明僅有一對符合題意的m,n.

(1)由已知可得:,即,

所以數(shù)列是等比數(shù)列,其中首項為,公比為,所以,即.

(2)Tn123nn,

Tn12nnn+1,

作差得:Tnnnn+1nn+1

所以

(3)由已知可得,,,

,,.

1°當同時為偶數(shù)時,可知;設,則,因為

所以數(shù)列單調(diào)遞增,則≥5時,,即{S2n}≥5時單調(diào)增,所以不成立;

故當同時為偶數(shù)時,可知

2°當同時為奇數(shù)時,設,則,因為

,

所以數(shù)列單調(diào)遞增,則當≥2時,

≥2時,,數(shù)列≥2時單調(diào)遞增,

,,故當同時為奇數(shù)時,不成立;

3°當為偶數(shù),為奇數(shù)時,顯然時,不成立,

,則

,∴,由2°可知,∴

∴當為偶數(shù),為奇數(shù)時,不成立;

4°當為奇數(shù),為偶數(shù)時,顯然時,不成立,若,則,

,則,

,∴時,不成立;

,由1°知,又記滿足,所以單調(diào)遞增,,所以時,不成立;

綜上:存在.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,函數(shù)的圖象在點處的切線平行于軸.

(1)求的值;

(2)求函數(shù)的極小值;

(3)設斜率為的直線與函數(shù)的圖象交于兩點 , ,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)討論的單調(diào)性;

(2)若在定義域內(nèi)有兩個極值點,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的定義域為 ,部分對應值如下表,的導函數(shù)的圖象如圖所示.

下列關于的命題:

①函數(shù)的極大值點為;

②函數(shù)上是減函數(shù);

③如果當時,的最大值是,那么的最大值為

④當時,函數(shù)個零點;

⑤函數(shù)的零點個數(shù)可能為、、、個.

其中正確命題的個數(shù)是( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設圓的圓心為,直線過點且與軸不重合,直線交圓兩點,過點的平行線交于點.

1)證明為定值,并寫出點的軌跡方程;

2)設點的軌跡為曲線,直線兩點,過點且與直線垂直的直線與圓交于兩點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校響應教育部門疫情期間“停課不停學”的號召,實施網(wǎng)絡授課,為檢驗學生上網(wǎng)課的效果,高三學年進行了一次網(wǎng)絡模擬考試.全學年共1500人,現(xiàn)從中抽取了100人的數(shù)學成績,繪制成頻率分布直方圖(如圖所示).已知這100人中分數(shù)段的人數(shù)比分數(shù)段的人數(shù)多6人.

1)根據(jù)頻率分布直方圖,求ab的值,并估計抽取的100名同學數(shù)學成績的中位數(shù);(中位數(shù)保留兩位小數(shù))

2)現(xiàn)用分層抽樣的方法從分數(shù)在,的兩組同學中隨機抽取6名同學,從這6名同學中再任選2名同學作為“網(wǎng)絡課堂學習優(yōu)秀代表”發(fā)言,求這2名同學的分數(shù)不在同一組內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求下列不等式的解集:

(1);

(2);

(3);

(4);

(5);

(6).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】乒乓球賽規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負方得0分。設在甲、乙的比賽中,每次發(fā)球,甲發(fā)球得1分的概率為,乙發(fā)球得1分的概率為,各次發(fā)球的勝負結果相互獨立,甲、乙的一局比賽中,甲先發(fā)球.則開始第4次發(fā)球時,甲、乙的比分為1比2的概率為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】秸稈還田是當今世界上普通重視的一項培肥地力的增產(chǎn)措施,在杜絕了秸稈焚燒所造成的大氣污染的同時還有增肥增產(chǎn)作用.某農(nóng)機戶為了達到在收割的同時讓秸稈還田,花元購買了一臺新型聯(lián)合收割機,每年用于收割可以收入萬元(已減去所用柴油費);該收割機每年都要定期進行維修保養(yǎng),第一年由廠方免費維修保養(yǎng),第二年及以后由該農(nóng)機戶付費維修保養(yǎng),所付費用(元)與使用年數(shù)的關系為:,已知第二年付費元,第五年付費元.

(1)試求出該農(nóng)機戶用于維修保養(yǎng)的費用(元)與使用年數(shù)的函數(shù)關系;

(2)這臺收割機使用多少年,可使平均收益最大?(收益=收入-維修保養(yǎng)費用-購買機械費用)

查看答案和解析>>

同步練習冊答案