【題目】乒乓球賽規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對(duì)方再連續(xù)發(fā)球2次,依次輪換,每次發(fā)球,勝方得1分,負(fù)方得0分。設(shè)在甲、乙的比賽中,每次發(fā)球,甲發(fā)球得1分的概率為,乙發(fā)球得1分的概率為,各次發(fā)球的勝負(fù)結(jié)果相互獨(dú)立,甲、乙的一局比賽中,甲先發(fā)球.則開(kāi)始第4次發(fā)球時(shí),甲、乙的比分為1比2的概率為________.
【答案】
【解析】
先確定比分為1比2時(shí)甲乙在三次發(fā)球比賽中得分情況,再分別求對(duì)應(yīng)概率,最后根據(jù)互斥事件概率公式求結(jié)果
比分為1比2時(shí)有三種情況:(1)甲第一次發(fā)球得分,甲第二次發(fā)球失分,乙第一次發(fā)球得分(2)甲第一次發(fā)球失分,甲第二次發(fā)球得分,乙第一次發(fā)球得分(3)甲第一次發(fā)球失分,甲第二次發(fā)球失分,乙第一次發(fā)球失分
所以概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是邊長(zhǎng)為2的菱形,底面.
(1)求證:平面;
(2)若,直線(xiàn)與平面所成的角為,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿(mǎn)足,.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè)數(shù)列滿(mǎn)足,其中.記的前項(xiàng)和為.是否存在正整數(shù),使得成立?若存在,請(qǐng)求出所有滿(mǎn)足條件的;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù).
(1)若函數(shù)在點(diǎn)處的切線(xiàn)與直線(xiàn)平行,求實(shí)數(shù)的值;
(2)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)在(1)的條件下,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)某鎮(zhèn)家庭抽樣調(diào)查的統(tǒng)計(jì),2003年每戶(hù)家庭平均消費(fèi)支出總額為1萬(wàn)元,其中食品消費(fèi)額為0.6萬(wàn)元.預(yù)測(cè)2003年后,每戶(hù)家庭平均消費(fèi)支出總額每年增加3000元,如果到2005年該鎮(zhèn)居民生活狀況能達(dá)到小康水平(即恩格爾系數(shù)n滿(mǎn)足),則這個(gè)鎮(zhèn)每戶(hù)食品消費(fèi)額平均每年的增長(zhǎng)率至多是多少(精確到0.1%)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)的焦點(diǎn)為,直線(xiàn)與軸相交于點(diǎn),與曲線(xiàn)相交于點(diǎn),且
(1)求拋物線(xiàn)的方程;
(2)過(guò)拋物線(xiàn)的焦點(diǎn)的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),過(guò)分別作拋物線(xiàn)的切線(xiàn),兩切線(xiàn)交于點(diǎn),求證點(diǎn)的縱坐標(biāo)為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x-a|-1,(a為常數(shù)).
(1)若f(x)在x∈[0,2]上的最大值為3,求實(shí)數(shù)a的值;
(2)已知g(x)=xf(x)+a-m,若存在實(shí)數(shù)a∈(-1,2],使得函數(shù)g(x)有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于各數(shù)不相等的正整數(shù)組(i1, i2, …, in),(n是不小于2的正整數(shù)),如果在p>q時(shí)有,則稱(chēng)ip和iq是該數(shù)組的一個(gè)“好序”,一個(gè)數(shù)組中“好序”的個(gè)數(shù)稱(chēng)為此數(shù)組的“好序數(shù)”,例如,數(shù)組(1, 3, 4, 2)中有好序“1, 3”,“1, 4”,“1, 2”,“3, 4”,其“好序數(shù)”等于4. 若各數(shù)互不相等的正整數(shù)組(a1, a2, a3, a4, a5, a6, a7)的“好序數(shù)”等于3,則(a7,a6, a5, a4, a3, a2, a1)的“好序數(shù)”是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=,g(x)=(a>0,且a≠1).
(1)求函數(shù)φ(x)=f(x)+g(x)的定義域;
(2)試確定不等式f(x)≤g(x)中x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com