函數(shù)y=
|x|
x
ax(a>1)
的圖象可能是下列中的( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)
分析:先去掉絕對值符號,當(dāng)x>0時,函數(shù)y=
|x|
x
ax(a>1)
=ax,當(dāng)x<0時,函數(shù)y=
|x|
x
ax(a>1)
=-ax,再根據(jù)函數(shù)的單調(diào)性進(jìn)行判斷即可.
解答:解:當(dāng)x>0時,函數(shù)y=
|x|
x
ax(a>1)
=ax,其圖象是在第一象限內(nèi)的增函數(shù),
當(dāng)x<0時,函數(shù)y=
|x|
x
ax(a>1)
=-ax,其圖象是在第三象限內(nèi)的減函數(shù),
對照選項知選A.
故選A.
點(diǎn)評:本題考查了函數(shù)的圖象使用以及單調(diào)遞增時指數(shù)和函數(shù)圖象的關(guān)系,當(dāng)指數(shù)大于1和指數(shù)小于1時的圖象形狀要記清.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)函數(shù)y=Acos(ωx+φ)(A>0,ω>0,|φ|<
π
2
)
的圖象如圖所示,則函數(shù)y=Acos(ωx+φ)的遞減區(qū)間是( 。
A、[2kπ+
π
4
,2kπ+
4
],k∈z
B、[2kπ-
π
4
,2kπ+
4
],k∈z
C、[kπ+
π
8
,kπ+
8
],k∈z
D、[kπ-
π
4
,kπ+
4
],k∈z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=(
x
)2
表示同一個函數(shù);
②已知函數(shù)f(x+1)=x2,則f(e)=e2-1
③已知函數(shù)f(x)=4x2+kx+8在區(qū)間[5,20]上具有單調(diào)性,則實數(shù)k的取值范圍是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定義在R上的兩個函數(shù),對任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-4x+3≤0},集合B為函數(shù)y=
x-2
的定義域,則A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案