【題目】設(shè)集合A={x||x﹣2|≤2,x∈R},B={y|y=﹣x2 , ﹣1≤x≤2},則R(A∩B)等于( )
A.R
B.{x|x∈R,x≠0}
C.{0}
D.
【答案】B
【解析】解:A=[0,4],B=[﹣4,0],所以A∩B={0},R(A∩B)={x|x∈R,x≠0},故選B.
【考點(diǎn)精析】本題主要考查了交、并、補(bǔ)集的混合運(yùn)算的相關(guān)知識點(diǎn),需要掌握求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題是假命題的是( )
A.若|a|=|b|,則a=b
B.兩直線平行,同位角相等
C.對頂角相等
D.若b2﹣4ac>0,則方程ax2+bx+c=0(a≠0)有兩個(gè)不等的實(shí)數(shù)根
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將參加夏令營的600名學(xué)生編號為:001,002,…,600.采用系統(tǒng)抽樣方法抽取一個(gè)容量為50的樣本,且隨機(jī)抽得的號碼為003.這600名學(xué)生分住在三個(gè)營區(qū),從001到300在第Ⅰ營區(qū),從301到495在第Ⅱ營區(qū),從496到600在第Ⅲ營區(qū).三個(gè)營區(qū)被抽中的人數(shù)依次為( )
A.25,17,8
B.25,16,9
C.26,16,8
D.24,17,9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)要抽查某種品牌的850顆種子的發(fā)芽率,抽取60粒進(jìn)行實(shí)驗(yàn).利用隨機(jī)數(shù)表抽取種子時(shí),先將850顆種子按001,002,…,850進(jìn)行編號,如果從隨機(jī)數(shù)表第8行第7列的數(shù)7開始向右讀,請你依次寫出最先檢測的4顆種子的編號 , , , .
(下面摘取了隨機(jī)數(shù)表第7行至第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d)若曲線y=f(x)和曲線y=g(x)都過點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(Ⅰ)求a,b,c,d的值;
(Ⅱ)若x≥﹣2時(shí),f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈R,sinx≤1,則( 。
A.¬p:x0∈R,sinx0≥1
B.¬p:x∈R,sinx≥1
C.¬p:x0∈R,sinx0>1
D.¬p:x∈R,sinx>1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x),g(x)分別是R上的偶函數(shù)和奇函數(shù),則下列結(jié)論正確的是( )
A.f(x)+g(x)是奇函數(shù)
B.f(x)﹣g(x)是偶函數(shù)
C.f(x)g(x)是奇函數(shù)
D.f(x)g(x)是偶函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com