【題目】已知函數(shù)的圖象上有一點列,點軸上的射影是,且 (), .

(1)求證: 是等比數(shù)列,并求出數(shù)列的通項公式;

(2)對任意的正整數(shù),當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.

(3)設(shè)四邊形的面積是,求證: .

【答案】(1) , ;(2) ;(3) 見解析;

【解析】試題分析:(1)利用等比數(shù)列定義證明;(2) 不等式恒成立,即求的最大值,利用單調(diào)性,求出最值,進而轉(zhuǎn)化為,對任意恒成立問題;(3)利用裂項相消法化簡不等式的左側(cè)即可.

試題解析:

(1)解:由 ()得 ()

,,()

是首項為3,公比為3的等比數(shù)列.

.

, .

(2),

, ,又,

故數(shù)列單調(diào)遞減,(此處也可作差證明數(shù)列單調(diào)遞減)

∴當(dāng)時, 取得最大值為.

要使對任意的正整數(shù),當(dāng)時,不等式恒成立,

則須使,即,對任意恒成立,

,解得,

∴實數(shù)的取值范圍為.

(3) ,而

∴四邊形的面積為

,

∴故.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知關(guān)于不等式解集為.

(1)個數(shù)中任取的一個數(shù),個數(shù)中任取的一個數(shù),求為空集的概率;

(2)若是從區(qū)間任取的一個數(shù),從區(qū)間任取的一個數(shù),求為空集的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為自然對數(shù)的底數(shù).

)求函數(shù)在區(qū)間上的最值;

)當(dāng)時,設(shè)函數(shù)(其中為常數(shù))的3個極值點為,且,將這5個數(shù)按照從小到大的順序排列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知方程

(1)求該方程表示一條直線的條件;

(2)當(dāng)為何實數(shù)時,方程表示的直線斜率不存在?求出這時的直線方程;

(3)已知方程表示的直線軸上的截距為-3,求實數(shù)的值;

(4)若方程表示的直線的傾斜角是45°,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連江一中第49屆田徑運動會提出了“我運動、我陽光、我健康、我快樂”的口號,某同學(xué)要設(shè)計一張如圖所示的豎向張貼的長方形海報進行宣傳,要求版心面積為162 版心是指圖中的長方形陰影部分為長度單位分米),上、下兩邊各空2 ,左、右兩邊各空1 .

)若設(shè)版心的高為 ,求海報四周空白面積關(guān)于的函數(shù)的解析式;

)要使海報四周空白面積最小,版心的高和寬該如何設(shè)計?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的圓心為原點,且與直線相切.

(1)求圓的方程;

(2)點在直線上,過點引圓的兩條切線,切點為,求證:直線恒過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四面體的頂點、、分別在兩兩垂直的三條射線, , 上,則在下列命題中,錯誤的是( )

A. 是正三棱錐

B. 直線與平面相交

C. 直線與平面所成的角的正弦值為

D. 異面直線所成角是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合I={1,2,3,4,5},選擇I的兩個非空子集A和B,要使B中最小的數(shù)大于A中最大的數(shù),則不同的選擇方法共有

A.50種 B.49種 C.48種 D.47種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等比數(shù)列的前n項和為Sn,已知a1=2,且4S13S2,2S3成等差數(shù)列.

)求數(shù)列的通項公式;

)設(shè),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案