如圖是函數(shù)y=f(x)的圖象,f(f(2))的值為(  )
分析:當(dāng)0≤x≤3時(shí),根據(jù) y=f(x)=2x求得f(2)=4.當(dāng)3<x≤9時(shí),根據(jù)f(x)=9-x,求得 f( f(2))=f(4)的值.
解答:解:由圖象可得,當(dāng)0≤x≤3時(shí),y=f(x)=2x,∴f(2)=4.
當(dāng)3<x≤9時(shí),由 y-0=
6-0
3-9
 (x-9),可得 y=f(x)=9-x,故 f( f(2))=f(4)=9-4=5,
故選C.
點(diǎn)評:本題主要考查利用分段函數(shù)求函數(shù)的值,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

4、如圖是函數(shù)y=f(x)的圖象,則下列說法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①-2是函數(shù)y=f(x)的極值點(diǎn);
②1是函數(shù)y=f(x)的最小值點(diǎn);
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(-2,2)上單調(diào)遞增.
則正確命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,下列說法錯(cuò)誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名一模)如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,給出下列命題:
①-3是函數(shù)y=f(x)的極值點(diǎn);
②-1是函數(shù)y=f(x)的最小值點(diǎn);
③y=f(x)在x=0處切線的斜率小于零;
④y=f(x)在區(qū)間(-3,1)上單調(diào)遞增.
則正確命題的序號(hào)是
①④
①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,下列說法正確的是
 
.   
①1是函數(shù)y=f(x)的極值點(diǎn);
②-2是函數(shù)y=f(x)的極小值點(diǎn)
③y=f(x)在x=0處切線的斜率大于零;
④y=f(x)在區(qū)間(-2,2)上單調(diào)遞增.

查看答案和解析>>

同步練習(xí)冊答案