已知四棱錐P-ABCD,現(xiàn)要在四棱錐的各個(gè)面上涂色,有4種不同的顏色可供選擇,要求相鄰的面不同色,則不同的涂色方法有( 。┓N.
A、60B、120C、48D、72
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:應(yīng)用題,排列組合
分析:先給底面涂色,有4種涂法,設(shè)4個(gè)側(cè)面為A、B、C、D,然后給A、B面;給C面,分C與A相同色、C與A不同色,利用乘法原理可得結(jié)論.
解答: 解:先給底面涂色,有4種涂法,設(shè)4個(gè)側(cè)面為A、B、C、D,
然后給A面涂色,有3種;給B面涂色,有2種;
給C面,若C與A相同色,則D面可以涂2種;若C與A不同色,則D面可以涂1種,
所以共有4×3×2×(2+1)=72.
故選:D
點(diǎn)評(píng):本題考查計(jì)數(shù)原理的運(yùn)用,考查學(xué)生分析解決問題的能力,正確分步是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

高三(2)班在一次數(shù)學(xué)考試中,對(duì)甲、乙兩組各12名同學(xué)的成績進(jìn)行統(tǒng)計(jì)分析,兩組成績的莖葉圖如圖所示,成績不少于90分為及格,現(xiàn)從兩組成績中按分層抽樣抽取一個(gè)容量為6的樣本,則不及格分?jǐn)?shù)應(yīng)抽
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x+y-7≤0
x-3y+1≤0
3x-y-5≥0
,則z=2x-y的最大值為(  )
A、10B、8C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的首項(xiàng)為m,公比為q(q≠1)的等比數(shù)列,Sn是它的前n項(xiàng)的和,對(duì)任意的n∈N*,點(diǎn)(an,
S2n
Sn
)在直線( 。┥希
A、qx+my-q=0
B、qx-my+m=0
C、mx+qy-q=0
D、qx+my+m=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,
3
),
b
=(3,m),若向量
a
b
的夾角為
π
6
,則實(shí)數(shù)m=( 。
A、2
3
B、
3
C、0
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為40的樣本,則分段的間隔為( 。
A、50B、40C、25D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(e=2.71828…是自然對(duì)數(shù)的底數(shù)),x∈R.
(Ⅰ)求函數(shù)y=f(x)的圖象過原點(diǎn)的切線方程;
(Ⅱ)設(shè)x>0,討論曲線y=f(x)與曲線y=mx2(m>0)公共點(diǎn)的個(gè)數(shù);
(Ⅲ)設(shè)a<b,證明
f(a)+f(b)
2
f(b)-f(a)
b-a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,已知a1=2,當(dāng)n≥2時(shí),an=
1
3
an-1+
2
3n-1
.?dāng)?shù)列{bn}滿足bn=3n-1an(n∈N*
(Ⅰ)證明:{bn}為等差數(shù)列,并求{bn}的通項(xiàng)公式;
(Ⅱ)數(shù)列{an}的前n項(xiàng)和為Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,an=3an-1+2,a1=2,則通項(xiàng)an=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案