在數(shù)列{an}中,an=3an-1+2,a1=2,則通項(xiàng)an=
 
考點(diǎn):數(shù)列遞推式
專(zhuān)題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:把數(shù)列遞推式兩邊同時(shí)加1,得到新的等比數(shù)列{an+1},由等比數(shù)列的通項(xiàng)公式求解后得答案.
解答: 解:由an=3an-1+2,得:
an+1=3(an-1+1)(n≥2),
∵a1=2,
∴a1+1=3≠0,
∴數(shù)列{an+1}構(gòu)成以3為首項(xiàng),以3為公比的等比數(shù)列.
an+1=3•3n-1=3n
an=3n-1
故答案為:3n-1.
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查了由an=pan-1+q型遞推式求數(shù)列通項(xiàng)公式的方法,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知四棱錐P-ABCD,現(xiàn)要在四棱錐的各個(gè)面上涂色,有4種不同的顏色可供選擇,要求相鄰的面不同色,則不同的涂色方法有( 。┓N.
A、60B、120C、48D、72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知數(shù)列{an}滿(mǎn)足a1=1,a2n-a2n-1=2,a2n+1-a2n=3n(n∈N*).
(I)計(jì)算:(a3-a1)+(a5-a3),并求a5;
(Ⅱ)求a2n-1(用含n的式子表示);
(Ⅲ)記bn=a2n-1+a2n,數(shù)列{bn}的前n項(xiàng)和為Sn,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-ax的圖象在點(diǎn)(1,f(1))處的切線l與直線x+3y+2=0垂直,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)和Sn,a5=5,S5=15,則數(shù)列{
1
anan+1
}的前2014項(xiàng)的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于定義在R上的函數(shù)f(x)圖象連續(xù)不斷,若存在常數(shù)a(a∈R),使得f(x+a)+af(x)=0對(duì)任意的實(shí)數(shù)x成立,則稱(chēng)f (x)是階數(shù)為a的回旋函數(shù),現(xiàn)有下列4個(gè)命題:
①f(x)=x2必定不是回旋函數(shù);
②若f(x)=sinωx(ω≠0)為回旋函數(shù),則其最小正周期必不大于2;
③若指數(shù)函數(shù)為回旋函數(shù),則其階數(shù)必大于1;
④若對(duì)任意一個(gè)階數(shù)為a(a≥0)的回旋函數(shù)f (x),方程f(x)=0均有實(shí)數(shù)根,其中為真命題的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,已知a3=3,a2+a8=10,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S8=S21,ak=0,則k=( 。
A、14B、15C、16D、21

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若tanA•tanB>1,則△ABC的形狀(  )
A、一定是銳角三角形
B、一定是直角三角形
C、一定是鈍角三角形
D、可能是銳角三角形,也可能是鈍角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案