在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.曲線(xiàn)C1的參數(shù)方程為(t為參數(shù)),曲線(xiàn)C2的極坐標(biāo)方程為ρsinθ-ρcosθ=3,則C1與C2交點(diǎn)在直角坐標(biāo)系中的坐標(biāo)為_(kāi)_______.
(2,5)
[解析] 將曲線(xiàn)C1的參數(shù)方程和曲線(xiàn)C2的極坐標(biāo)方程分別轉(zhuǎn)化為直角坐標(biāo)方程C1:y=x2+1,C2:y-x=3,
故交點(diǎn)坐標(biāo)為(2,5).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若復(fù)數(shù)(a∈R,i是復(fù)數(shù)單位)是純虛數(shù),則實(shí)數(shù)a=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
用數(shù)學(xué)歸納法證明1+2+3+…+n2=,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,△ABC為圓的內(nèi)接三角形,BD為圓的弦,且BD∥AC.過(guò)點(diǎn)A作圓的切線(xiàn)與DB的延長(zhǎng)線(xiàn)交于點(diǎn)E,AD與BC交于點(diǎn)F.若AB=AC,AE=6,BD=5,則線(xiàn)段CF的長(zhǎng)為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
在極坐標(biāo)系中,圓ρ=2cosθ的垂直于極軸的兩條切線(xiàn)方程分別為( )
A.θ=0(ρ∈R)和ρcosθ=2
B.θ=(ρ∈R)和ρcosθ=2
C.θ=(ρ∈R)和ρcosθ=1
D.θ=0(ρ∈R)和ρcosθ=1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
曲線(xiàn)C的直角坐標(biāo)方程為x2+y2-2x=0,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,則曲線(xiàn)C的極坐標(biāo)方程為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若A⊆B,則實(shí)數(shù)a,b必滿(mǎn)足( )
A.|a+b|≤3 B.|a+b|≥3
C.|a-b|≤3 D.|a-b|≥3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知兩點(diǎn)M(-2,0),N(2,0),點(diǎn)P滿(mǎn)足·=0,則點(diǎn)P的軌跡方程為( )
A.+y2=1 B.x2+y2=4
C.y2-x2=8 D.x2+y2=8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com