已知橢圓+=1的左、右焦點分別為F1、F2,點P在橢圓上.若P、F1、F2是一個直角三角形的三個頂點,則點P到x軸的距離為( )
A.
B.3
C.
D.
【答案】分析:設(shè)橢圓短軸的一個端點為M.根據(jù)橢圓方程求得c,進而判斷出∠F1MF2<90°,即∠PF1F2=90°或∠PF2F1=90°.令x=±,進而可得點P到x軸的距離.
解答:解:設(shè)橢圓短軸的一個端點為M.
由于a=4,b=3,
∴c=<b
∴∠F1MF2<90°,
∴只能∠PF1F2=90°或∠PF2F1=90°.
令x=±
y2=9=,
∴|y|=
即P到x軸的距離為
點評:本題主要考查了橢圓的基本應(yīng)用.考查了學(xué)生推理和實際運算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓+=1的左、右焦點分別為F1、F2,點P在橢圓上.若P、F1、F2是一個直角三角形的三個頂點,則點P到x軸的距離為(    )

A.             B.3           C.         D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓+=1的左、右焦點分別為F1、F2,點P在橢圓上.若P、F1、F2是一個直角三角形的三個頂點,則點P到x軸的距離為(    )

A.             B.3           C.         D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓+=1的左焦點為F,過點F的直線交橢圓于A,B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D,E兩點.

(1)若點G的橫坐標為-,求直線AB的斜率.

(2)記△GFD的面積為S1,△OED(O為原點)的面積為S2.試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓+=1的左焦點為F,過點F的直線交橢圓于A,B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D,E兩點.

(1)若點G的橫坐標為-,求直線AB的斜率.

(2)記△GFD的面積為S1,△OED(O為原點)的面積為S2.試問:是否存在直線AB,使得S1=S2?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省高二第二次月考文科數(shù)學(xué) 題型:選擇題

已知橢圓+=1的左、右焦點分別為F1、F2,點P在橢圓上,若P、F1、F2是一個直角三角形的三個頂點,則點P到x軸的距離為( 。

A.              B.              C.          D.

 

查看答案和解析>>

同步練習(xí)冊答案