如圖,已知橢圓+=1的左焦點為F,過點F的直線交橢圓于A,B兩點,線段AB的中點為G,AB的中垂線與x軸和y軸分別交于D,E兩點.
(1)若點G的橫坐標(biāo)為-,求直線AB的斜率.
(2)記△GFD的面積為S1,△OED(O為原點)的面積為S2.試問:是否存在直線AB,使得S1=S2?說明理由.
【解析】(1)依題意,直線AB的斜率存在,
設(shè)其方程為y=k(x+1),
將其代入+=1,
整理得(4k2+3)x2+8k2x+4k2-12=0,
設(shè)A(x1,y1),B(x2,y2),所以x1+x2=,
故點G的橫坐標(biāo)為=.
依題意,得=-,解得k=±.
(2)假設(shè)存在直線AB,使得S1=S2,顯然直線AB不能與x,y軸垂直.
由(1)可得G,
因為DG⊥AB,所以×k=-1,
解得xD=,即D,
因為△GFD∽△OED,
所以S1=S2⇔|GD|=|OD|,
所以
=,
整理得8k2+9=0,因為此方程無解,
所以不存在直線AB,使得S1=S2.
科目:高中數(shù)學(xué) 來源: 題型:
素材2:設(shè)f(m)=||AB|-|CD||.
試根據(jù)上述素材構(gòu)建一個問題,然后再解答.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知橢圓=1(2≤m≤5),過其左焦點且斜率為1的直線與橢圓及其準(zhǔn)線的交點從左到右的順序為A、B、C、D,設(shè)f(m)=||AB|-|CD||
(1)求f(m)的解析式;
(2)求f(m)的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆廣東省、陽東一中高二上聯(lián)考文數(shù)試卷(解析版) 題型:解答題
(本題滿分14分)
如圖,已知橢圓=1(a>b>0),F1、F2分別為橢圓的左、右焦點,A為橢圓的上的頂點,直線AF2交橢圓于另 一點B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·=,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期11月月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分15分)
如圖,已知橢圓=1(2≤m≤5),過其左焦點且斜率為1的直線與橢圓及直線的交點從左到右的順序為A、B、C、D,設(shè).
(Ⅰ)求的解析式;
(Ⅱ)求的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年河南省高二上學(xué)期12月份考試數(shù)學(xué)卷(文理) 題型:解答題
(12分)如圖,已知橢圓=1(a>b>0)過點(1,),離心率為,左、右焦點分別為F1、F2. 點P為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標(biāo)原點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2, 證明:=2;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com