13.已知數(shù)列{an}的前n項和為Sn,a1=1,且nan+1=2Sn(n∈N*),數(shù)列{bn}滿足b1=$\frac{1}{2}$,b2=$\frac{1}{4}$,對任意n∈N+,都有bn+12=bn•bn+2
(I)求數(shù)列{an},{bn}的通項公式;
(II)設(shè){anbn}的前n項和為Tn,若Tn>$\frac{4-λ}{2}$對任意的n∈N+恒成立,求λ得取值范圍.

分析 (Ⅰ)利用nan+1=2Sn,再寫一式,兩式相減,再疊乘,即可求數(shù)列{an}的通項公式;在等比數(shù)列{bn}滿足b1=$\frac{1}{2}$,b2=$\frac{1}{4}$,公比為$\frac{1}{2}$,由此可得數(shù)列{bn}的通項公式;
(Ⅱ)利用錯位相減法求數(shù)列的和,再將不等式轉(zhuǎn)化為λ>$\frac{n+2}{{2}^{n-1}}$對任意的n∈N+恒成立,構(gòu)造函數(shù),利用函數(shù)的性質(zhì),即可確定實數(shù)λ的取值范圍.

解答 解:(Ⅰ)∵nan+1=2Sn,∴(n-1)an=2Sn-1(n≥2),兩式相減得,nan+1-(n-1)an=2an,
∴nan+1=(n+1)an,即$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$(n≥2),
又因為a1=1,a2=2,從而$\frac{{a}_{2}}{{a}_{1}}$=2,
∴an=1×$\frac{2}{1}×\frac{3}{2}$×…×$\frac{n}{n-1}$=n(n≥2),
故數(shù)列{an}的通項公式an=n(n∈N*).
在數(shù)列{bn}中,由bn+12=bn•bn+2,知數(shù)列{bn}是等比數(shù)列,首項、公比均為$\frac{1}{2}$,
∴數(shù)列{bn}的通項公式bn=$(\frac{1}{2})^{n}$;
(Ⅱ)∵Tn=a1b1+a2b2+…+anbn=$\frac{1}{2}$+2×($\frac{1}{2}$)2+…+n×$(\frac{1}{2})^{n}$     ①
∴$\frac{1}{2}$Tn=($\frac{1}{2}$)2+2×($\frac{1}{2}$)3+…+(n-1)×$(\frac{1}{2})^{n}$+n×($\frac{1}{2}$)n+1       ②
由①-②,得$\frac{1}{2}$Tn=$\frac{1}{2}$+($\frac{1}{2}$)2+($\frac{1}{2}$)3+…+$(\frac{1}{2})^{n}$-×($\frac{1}{2}$)n+1=1-$\frac{n+2}{{2}^{n+1}}$,
∴Tn=2-$\frac{n+2}{{2}^{n}}$,
Tn>$\frac{4-λ}{2}$對任意的n∈N+恒成立,λ>$\frac{n+2}{{2}^{n-1}}$對任意的n∈N+恒成立,
設(shè)f(n)=$\frac{n+2}{{2}^{n-1}}$,
f(n)-f(n-1)=$-\frac{n}{{2}^{n-1}}$<0,
則f(n)在[1,+∞)上單調(diào)遞減,f(n)≤f(1)=3恒成立,則λ>3滿足條件.
綜上所述,實數(shù)λ的取值范圍是(3,+∞).

點評 本題考查數(shù)列遞推式,考查數(shù)列的通項,考查錯位相減法求數(shù)列的和,考查恒成立問題,確定數(shù)列的通項,正確求和是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.函數(shù)$f(x)=\frac{{\sqrt{1+{{log}_3}x}}}{{{2^x}-4}}$的定義域為( 。
A.$(\frac{1}{3},+∞)$B.$(\frac{1}{3},2)∪(2,+∞)$C.$[\frac{1}{3},2)∪(2,+∞)$D.$[\frac{1}{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知實數(shù)x,y滿足ax<ay(0<a<1),則下列關(guān)系式恒成立的是( 。
A.$\frac{1}{{{x^2}+1}}>\frac{1}{{{y^2}+1}}$B.x3>y3C.sinx>sinyD.ln(x2+1)>ln(y2+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列函數(shù)中,是偶函數(shù)且在(0,+∞)上為增函數(shù)的是( 。
A.y=cosxB.y=-x2+1C.y=log2|x|D.y=ex-e-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知△ABC的三個內(nèi)角A、B、C所對的邊分別為a、b、c.若a=2,cosA=$\frac{1}{3}$,則△ABC面積的最大值為( 。
A.2B.$\sqrt{2}$C.$\frac{1}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知兩個等差數(shù)列{an},{bn},它們的前n項和分別是Sn,Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+3}{3n-1}$,則$\frac{{a}_{7}}{_{7}}$=$\frac{29}{38}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{log_2}x,x>0\\{4^x},x≤0\end{array}$,則f(f(-2))的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)y=tan(2x+$\frac{π}{3}$)的圖象的一個對稱中心的坐標(biāo)為( 。
A.($\frac{π}{12}$,0)B.($\frac{π}{6}$,0)C.($\frac{π}{4}$,0)D.($\frac{2π}{3}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在△ABC中,角A,B,C所對的邊分別為a,b,c,若a=$\sqrt{2}$,b=2,B=45°,則角A的大小為30°.

查看答案和解析>>

同步練習(xí)冊答案