分析:(1)先求函數(shù)在x=
處的導(dǎo)數(shù),利用函數(shù)在切點(diǎn)處的導(dǎo)數(shù)的幾何意義是該點(diǎn)處的切線的斜率,求出a值.(2)先求函數(shù)的導(dǎo)函數(shù),通過討論a的范圍,討論函數(shù)f(x)的單調(diào)性,進(jìn)而根據(jù)函數(shù)的單調(diào)性和極值求函數(shù)的最小值
解答:解:(1)∵f′(x)=2xln(ax)+x
2•
=x[2ln(ax)+1],
∴3e=f′(
)=
[2ln(a•
)+1],
解得a=1.
(2)由題知x>0,f′(x)=x[2ln(ax)+1],
令f′(x)=0,則2ln(ax)+1=0,得x=
,
①當(dāng)a≥1時(shí),
≤
.
當(dāng)x∈[
,
]時(shí),f′(x)≥0,
∴f(x)在[
,
]上是增函數(shù),
∴[f(x)]
min=f(
)=
ln
=
(lna-
);
②當(dāng)
<a<1時(shí),
<
<
.
當(dāng)x∈[
,
)時(shí),f′(x)<0;
當(dāng)x∈[
,
]時(shí),f′(x)>0,
∴f(x)在[
,
]上是減函數(shù),在[
,
]上為增函數(shù),
∴[f(x)]
min=f(
)=
ln
=-
;
③當(dāng)0<a≤
時(shí),
≥
.
當(dāng)x∈[
,
]時(shí),f′(x)<0,
∴f(x)在[
,
]上是減函數(shù),
∴[f(x)]
min=f(
)=elna
=e(lna+
).
綜上所述:當(dāng)a≥1時(shí),f(x)在[
,
]上的最小值為
(lna-
);
當(dāng)
<a<1時(shí),f(x)在[
,
]上的最小值為-
;
當(dāng)0<a≤
時(shí),f(x)在[
,
]上的最小值為e(lna+
).
點(diǎn)評:本題考查了導(dǎo)數(shù)的運(yùn)算及其幾何意義,利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值的方法,分類討論的思想方法