7.(1)類比平面內(nèi)直角三角形ABC的勾股定理,試給出空間中四面體P-DEF性質(zhì)的猜想;
(2)證明第(1)問中得到的猜想.

分析 (1)類比平面內(nèi)直角三角形ABC的勾股定理,即可給出空間中四面體P-DEF性質(zhì);
(2)設(shè)三個(gè)側(cè)棱是a,b,c,可得三個(gè)側(cè)面的面積,底面△DEF的面積,從而可得結(jié)論.

解答 (1)解:底面△DEF的面積為S0,三個(gè)側(cè)面的面積分別為S1,S2,S3,則S02=S12+S22+S32
(2)證明:設(shè)三個(gè)側(cè)棱是a,b,c,則三個(gè)側(cè)面的面積分別是$\frac{ab}{2}$,$\frac{bc}{2}$,$\frac{ac}{2}$.
三條底邊的長(zhǎng)為$\sqrt{{a}^{2}+^{2}}$,$\sqrt{^{2}+{c}^{\;}}$,$\sqrt{{a}^{2}+{c}^{2}}$,
由余弦定理,可得底面的面積是$\frac{\sqrt{(ab)^{2}+(ac)^{2}+(bc)^{2}}}{2}$
∵底面△DEF的面積為S0,三個(gè)側(cè)面的面積分別為S1,S2,S3
∴S02=S12+S22+S32

點(diǎn)評(píng) 本題考查類比推理,考查學(xué)生分析解決問題的能力,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在△ABC中,∠BAC=120°,AD⊥AB,|BC|=$\sqrt{3}$|BD|,|AD|=1,則|AC|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知6件產(chǎn)品中有2件是次品,現(xiàn)從這6件產(chǎn)品中任取2件,恰取到一件次品的概率為( 。
A.$\frac{8}{15}$B.$\frac{4}{15}$C.$\frac{2}{15}$D.$\frac{1}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若一物體的運(yùn)動(dòng)方程如下:$s=\left\{{\begin{array}{l}{3{t^2}+2\;(0≤t<3)}\\{3{{(t-3)}^2}+29\;(t≥3)}\end{array}}\right.$(t(單位:s)是時(shí)間,s(單位:m)是位移),則此物體在t=4時(shí)的瞬時(shí)速度為6m/sm/s.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.勾股定理:在直角邊長(zhǎng)為a、b,斜邊長(zhǎng)為c的直角三角形中,有a2+b2=c2.類比勾股定理可得,在長(zhǎng)、寬、高分別為p、q、r,體對(duì)角線長(zhǎng)為d 的長(zhǎng)方體中,有( 。
A.p2+q2+r2+pq+qr+rp=d2B.p3+q3+r3=d3
C.p2+q2+r2=d2D.p+q+r=d

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下面給出了四個(gè)類比推理.
①a,b為實(shí)數(shù),若a2+b2=0則a=b=0;類比推出:z1、z2為復(fù)數(shù),若z12+z22=0,則z1=z2=0.
②若數(shù)列{an}是等差數(shù)列,bn=$\frac{1}{n}$(a1+a2+a3+…+an),則數(shù)列{bn}也是等差數(shù)列;類比推出:若數(shù)列{cn}是各項(xiàng)都為正數(shù)的等比數(shù)列,dn=$\root{n}{{c}_{1}•{c}_{2}•{c}_{3}•…•{c}_{n}}$,則數(shù)列{dn}也是等比數(shù)列.
③若a、b、c∈R.則(ab)c=a(bc);類比推出:若$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$為三個(gè)向量.則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$與$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)
④若圓的半徑為a,則圓的面積為πa2;類比推出:若橢圓的長(zhǎng)半軸長(zhǎng)為a,短半軸長(zhǎng)為b,則橢圓的面積為πab.
上述四個(gè)推理中,結(jié)論正確的是(  )
A.①②B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知兩個(gè)同底的正四棱錐的所有頂點(diǎn)都在同一球面上,它們的底面邊長(zhǎng)為2,體積的比值為$\frac{1}{2}$,則該球的表面積為9π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若數(shù)列An:a1,a2,…,an(n∈N*,n≥2)滿足a1=0,|ak+1-ak|=1(k=1,2,…,n-1),則稱An為L(zhǎng)數(shù)列.記S(An)=a1+a2+…+an
(1)若A5為L(zhǎng)數(shù)列,且a5=0,試寫出S(A5)的所有可能值;
(2)若An為L(zhǎng)數(shù)列,且an=0,求S(An)的最大值;
(3)對(duì)任意給定的正整數(shù)n(n≥2),是否存在L數(shù)列An,使得S(An)=0?若存在,寫出滿足條件的一個(gè)L數(shù)列An;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù) f(x)=$\left\{\begin{array}{l}{2{x}^{3}+{x}^{2}+1,x≤0}\\{{e}^{ax},x>0}\end{array}\right.$在[-2,3]上的最大值為2,則實(shí)數(shù)a的取值范圍是(  )
A.[$\frac{1}{3}$ln2,+∞)B.[0,$\frac{1}{3}$ln2]C.(-∞,0]D.(-∞,$\frac{1}{3}$ln2]

查看答案和解析>>

同步練習(xí)冊(cè)答案