【題目】已知函數(shù),其中為實(shí)數(shù).

1)求的單調(diào)區(qū)間;

2)若,則當(dāng)時(shí),恒成立,求的取值范圍.

【答案】1)見解析;(2

【解析】

1)先求出函數(shù)的解析式,再對(duì)其求導(dǎo),利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可求解;

2)先通過分類討論去掉絕對(duì)值,再將不等式恒成立問題轉(zhuǎn)化為函數(shù)的最值問題,然后根據(jù)函數(shù)的單調(diào)性求出最值,則問題獲解.

解:(1)由題意得,

所以

所以時(shí),恒成立,

即當(dāng)時(shí),恒成立,

所以的單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間.

當(dāng)時(shí),令,得,

,得,

所以的單調(diào)遞增區(qū)間為

單調(diào)遞減區(qū)間為

綜上,當(dāng)時(shí),的單調(diào)遞減區(qū)間為,無單調(diào)遞增區(qū)間;

當(dāng)時(shí),)的單調(diào)遞增區(qū)間為

單調(diào)遞減區(qū)間為

2)當(dāng)時(shí),恒成立,

等價(jià)于當(dāng)時(shí),恒成立.

①若

上單調(diào)遞減,

所以,所以,

,與矛盾,故此時(shí)不存在.

②若

當(dāng)時(shí),

上單調(diào)遞減,

所以,此時(shí),符合題意.

當(dāng)時(shí),

,則上恒成立,

所以上單調(diào)遞增,

所以當(dāng)時(shí),,所以

所以上單調(diào)遞增,

所以,

所以

,

所以

綜上,實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某工廠的一個(gè)車間抽取某種產(chǎn)品50件,產(chǎn)品尺寸(單位:cm)落在各個(gè)小組的頻數(shù)分布如下表:

數(shù)據(jù)分組

[12.5,15.5

[15.5,18.5

[18.5,21.5

[21.524.5

[24.5,27.5

[27.5,30.5

[30.5,33.5

頻數(shù)

3

8

9

12

10

5

3

1)根據(jù)頻數(shù)分布表,求該產(chǎn)品尺寸落在[27.5,33.5]內(nèi)的概率;

2)求這50件產(chǎn)品尺寸的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

3)根據(jù)頻數(shù)分布對(duì)應(yīng)的直方圖,可以認(rèn)為這種產(chǎn)品尺寸服從正態(tài)分布,其中近似為樣本平均值,近似為樣本方差,經(jīng)計(jì)算得.利用該正態(tài)分布,求.

附:(1)若隨機(jī)變量服從正態(tài)分布,則;(2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌布娃娃做促銷活動(dòng):已知有50個(gè)布娃娃,其中一些布娃娃里面有獎(jiǎng)品,參與者可以先在50個(gè)布娃娃中購買5個(gè),看完5個(gè)布娃娃里面的結(jié)果再?zèng)Q定是否將剩下的布娃娃全部購買,設(shè)每個(gè)布娃娃有獎(jiǎng)品的概率為,且各個(gè)布娃娃是否有獎(jiǎng)品相互獨(dú)立.

1)記5個(gè)布娃娃中有1個(gè)有獎(jiǎng)品的概率為,當(dāng)時(shí),的最大值,求;

2)假如這5個(gè)布娃娃中恰有1個(gè)有獎(jiǎng)品,以上問中的作為p的值.已知每次購買布娃娃需要2元,若有中獎(jiǎng),則中獎(jiǎng)?wù)呙看慰傻锚?jiǎng)金15.以最終獎(jiǎng)金的期望作為決策依據(jù),是否該買下剩下所有的45個(gè)布娃娃;

3)若已知50件布娃娃中有10個(gè)布娃娃有獎(jiǎng)品,從這堆布娃娃中任意購買5個(gè),若抽到k個(gè)有獎(jiǎng)品可能性最大,求k的值.k為正整數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知可導(dǎo)函數(shù)fx)的定義域?yàn)?/span>,且滿足,則對(duì)任意的,“”是“”的( )

A.充分不必要條件B.必要不充分條件

C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中,四邊形ABCD為平行四邊形,且點(diǎn)在底面上的投影H恰為CD的中點(diǎn).

1)棱BC上存在一點(diǎn)N,使得AD⊥平面,試確定點(diǎn)N的位置,說明理由;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,的導(dǎo)函數(shù).

1)討論的單調(diào)性;

2)若,當(dāng)時(shí),求證:有兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有6名選手參加才藝比賽,其中男、女選手各3名,且3名男選手分別表演歌唱、舞蹈和魔術(shù),3名女選手分別表演歌唱、舞蹈和魔術(shù),若要求相鄰出場(chǎng)的選手性別不同且表演的節(jié)目不同,則不同的出場(chǎng)方式的種數(shù)為(

A.6B.12C.18D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)fx)在定義域(0,+∞)上是單調(diào)函數(shù),且x∈(0+∞),ffx)﹣ex+x)=e.若不等式2fx)﹣f′(x)﹣3ax對(duì)x∈(0,+∞)恒成立,則a的取值范圍是(

A.(﹣∞,e2]B.(﹣∞,e1]C.(﹣∞,2e3]D.(﹣∞,2e1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系xOy中,拋物線E頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求拋物線E的極坐標(biāo)方程;

(Ⅱ)過點(diǎn)傾斜角為的直線lEMN兩點(diǎn),若,求.

查看答案和解析>>

同步練習(xí)冊(cè)答案