函數(shù)y=
6-x-x2
的定義域是
 
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:根據(jù)函數(shù)的解析式,二次根式的被開方數(shù)大于或等于0,列出不等式,求出解集即可.
解答: 解:∵函數(shù)y=
6-x-x2
,
∴6-x-x2≥0,
即x2+x-6≤0;
∴(x+3)(x-2)≤0,
解得-3≤x≤2,
∴函數(shù)y的定義域是(-3,2).
故答案為:(-3,2).
點(diǎn)評:本題考查了求函數(shù)定義域的問題,解題時應(yīng)化為求一元二次不等式的解集的問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2
-4lnx+ax在點(diǎn)(1,f(1))處的切線平行于直線6x+y-3=0
(1)求a的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若?x≥1,不等式x+
1
x+1
≥a恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向量
a
=(4cosα,sinα),
b
=(sinβ,4cosβ),
c
=(cosβ,-4sinβ),α、β∈R且α、β、(α+β均不等于
π
2
+kπ,k∈Z).
(1)求|
b
+
c
|的最大值;
(2)當(dāng)
a
b
,且
a
⊥(
b
-2
c
)時,求tanα-tanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項(xiàng)和Sn=
2
3
an+
1
3
,則a4=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c為△ABC的三個內(nèi)角A、B、C的對邊,向量
m
=(2sinB,2-cos2B),
n
=(2sin2
π
4
+
B
2
),-1),
m
n
,a=
3
,b=1.
(1)求角B的大;
(2)求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)常數(shù)a使方程sinx-
3
cosx=a在閉區(qū)間[0,2π]上恰有三個解x1,x2,x3,則x1+x2+x3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“x<0”是“x<1”的
 
條件.(填“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”的其中之一)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
b
<0”是“
a
b
夾角為鈍角”的( 。
A、充分不必要條件
B、必要不充分條件
C、充分必要條件
D、既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案