A. | [-7,1] | B. | [-1,2] | C. | (-∞,-$\frac{4}{3}$]∪[1,+∞] | D. | (-∞,-7]∪[2,+∞) |
分析 先求出x∈[-3,0],f(x)=-f(x)=-x2-3x,再利用方程f(x)-kx+4=0有解,分離參數(shù),即可求得結(jié)論.
解答 解:設(shè)x∈[-3,0],則-x∈[0,3],
∴f(-x)=x2+3x,
∵f(x)是定義在[-3,3]上的奇函數(shù),
∴f(x)=-f(x)=-x2-3x,
∵方程f(x)-kx+4=0有解,
∴x∈[-3,0),k=-x+$\frac{4}{x}$-3∈(-∞,-$\frac{4}{3}$];
x∈(0,3],k=x+$\frac{4}{x}$-3∈[1,+∞);
故選:C.
點(diǎn)評 本題考查函數(shù)的奇偶性,考查值的范圍,正確分離參數(shù)是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | e${\;}^{\frac{x}{2}}$, | B. | xe${\;}^{\frac{x}{2}}$, | C. | $\frac{1}{2}$•e${\;}^{\frac{x}{2}}$, | D. | $\frac{x}{2}$•e${\;}^{\frac{x}{2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com