15.若直線3x+y+a=0把圓x2+y2-2x-4y=0分成面積相等的兩部分,則a的值為-5.

分析 由題意可得可得直線過圓心,將圓心坐標(biāo)(1,2)代入直線3x+y+a=0化簡,即可求得a的值.

解答 解:由題意可得直線過圓心,將圓心坐標(biāo)(1,2)代入直線3x+y+a=0,
可得3+2+a=0,求得:a=-5,
故答案為-5.

點(diǎn)評 本題主要考查直線和圓的位置關(guān)系,判斷直線過圓心,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)定點(diǎn)A(0,1),常數(shù)m>2,動點(diǎn)M(x,y),設(shè)$\overrightarrow p=({x+m,y})$,$\overrightarrow q=({x-m,y})$,且$|{\overrightarrow p}|-|{\overrightarrow q}|=4$.
(1)求動點(diǎn)M的軌跡方程;
(2)設(shè)直線L:$y=\frac{1}{2}x-3$與點(diǎn)M的軌跡交于B,C兩點(diǎn),問是否存在實數(shù)m使得$\overrightarrow{AB}•\overrightarrow{AC}=\frac{9}{2}$?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右焦點(diǎn)為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)經(jīng)過原點(diǎn)且傾斜角為30°的直線l與雙曲線右支交于點(diǎn)A,且△OAF是以AF為底邊的等腰三角形,求雙曲線的離心率e的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知 a,b,c是兩兩不等的實數(shù),點(diǎn) P(b,b+c),點(diǎn)Q(a,c+a),則直線 PQ的傾斜角為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知不等式x2-2ax+a>0(x∈R)恒成立,則不等式a2x+1<a${\;}^{{x}^{2}+2x-3}$<1的解集是( 。
A.(1,2)B.(-$\frac{1}{2}$,2)C.(-2,2)D.(-3,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中哪個與函數(shù)y=x相等( 。
A.y=($\sqrt{x}$)2B.f(x)=$\frac{{x}^{2}}{x}$C.y=|x|D.y=$\root{3}{{x}^{3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)Sn是等差數(shù)列{an}的前n項和,若$\frac{a_8}{a_7}=\frac{13}{5}$,則$\frac{{{S_{15}}}}{{{S_{13}}}}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某同學(xué)在研究函數(shù)f(x)=$\frac{4}{|x|+2}$-1(x∈R)時,得出了下面4個結(jié)論:①等式f(-x)=f(x)在x∈R時恒成立;②函數(shù)f(x)在x∈R上的值域為(-1,1];③曲線y=f(x)與g(x)=2x-2僅有一個公共點(diǎn);④若f(x)=$\frac{4}{|x|+2}$-1在區(qū)間[a,b](a,b為整數(shù))上的值域是[0,1],則滿足條件的整數(shù)數(shù)對(a,b)共有5對.其中正確結(jié)論的序號有①②④(請將你認(rèn)為正確的結(jié)論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.一個車間為了規(guī)定工時定額,需要確定加工零件所花費(fèi)的時間,為此進(jìn)行了4次試驗.收集的數(shù)據(jù)如下:
零件個數(shù)x(個)1234
加工時間y(小時)2358
(Ⅰ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(Ⅱ)現(xiàn)需生產(chǎn)20件此零件,預(yù)測需用多長時間?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$x)

查看答案和解析>>

同步練習(xí)冊答案