分析 (1)雙曲線的一條漸近線方程為y=x且c=2,即可求出a,b的值,問(wèn)題得以解決,
(2)先求出點(diǎn)的坐標(biāo),再代入雙曲線方程,結(jié)合結(jié)合c2=a2+b2,然后建立a,c的方程,從而求出雙曲線的離心率.
解答 解:(1)由題可知a=b,所以c=$\sqrt{2}$a=$\sqrt{2}$b=2,
則a=b=$\sqrt{2}$,
則雙曲線的方程為$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{2}$=1,
(2)由題|OA|=c,又OA的傾斜角為30°,所以A($\frac{\sqrt{3}}{2}$c,$\frac{1}{2}$c),
代入雙曲線方程有$\frac{3{c}^{2}}{4{a}^{2}}$-$\frac{{c}^{2}}{4^{2}}$=1,
結(jié)合c2=a2+b2,可得3c4-8a2c2+4a4=0,
解得e2=2或e2=$\frac{2}{3}$(舍去)
解得e=$\sqrt{2}$
點(diǎn)評(píng) 本題考查雙曲線的離心率的求法,解題時(shí)要認(rèn)真審題,注意雙曲線的性質(zhì)的合理運(yùn)用,是中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | $\frac{1}{2}$ | C. | $-\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 既是等差數(shù)列又是等比數(shù)列 | B. | 既不是等差數(shù)列也不是等比數(shù)列 | ||
C. | 是等差數(shù)列但不是等比數(shù)列 | D. | 是等比數(shù)列但不是等差數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | $-\frac{5}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com