【題目】已知函數(shù).
(1)若函數(shù)在上為增函數(shù),求的取值范圍;
(2)若函數(shù)有兩個(gè)不同的極值點(diǎn),記作,,且,證明:(為自然對(duì)數(shù)).
【答案】(1)(2)見解析
【解析】
分析:(1)由題意可知,函數(shù)的定義域?yàn)?/span>,,因?yàn)楹瘮?shù)在為增函數(shù),所以在上恒成立,等價(jià)于,
由此可求的取值范圍;
(2)求出,因?yàn)?/span>有兩極值點(diǎn),所以,
設(shè)令,則,上式等價(jià)于要證,令,根據(jù)函數(shù)的單調(diào)性證出即可.
詳解:
(1)由題意可知,函數(shù)的定義域?yàn)?/span>,
,
因?yàn)楹瘮?shù)在為增函數(shù),所以在上恒成立,
等價(jià)于在上恒成立,即,
因?yàn)?/span>,所以,
故的取值范圍為.
(2)可知,
所以,
因?yàn)?/span>有兩極值點(diǎn),所以,
欲證,等價(jià)于要證:,即,
所以,因?yàn)?/span>,所以原式等價(jià)于要證明:,①
由,可得,則有,②
由①②原式等價(jià)于要證明:,即證,
令,則,上式等價(jià)于要證,
令,則
因?yàn)?/span>,所以,所以在上單調(diào)遞增,
因此當(dāng)時(shí),,即.
所以原不等式成立,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小金同學(xué)在學(xué)校中貫徹著“邊玩邊學(xué)”的學(xué)風(fēng),他在“漢諾塔”的游戲中發(fā)現(xiàn)了數(shù)列遞推的奧妙:有、、三個(gè)木樁,木樁上套有編號(hào)分別為、、、、、、的七個(gè)圓環(huán),規(guī)定每次只能將一個(gè)圓環(huán)從一個(gè)木樁移動(dòng)到另一個(gè)木樁,且任意一個(gè)木樁上不能出現(xiàn)“編號(hào)較大的圓環(huán)在編號(hào)較小的圓環(huán)之上”的情況,現(xiàn)要將這七個(gè)圓環(huán)全部套到木樁上,則所需的最少次數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植園在芒果臨近成熟時(shí),隨機(jī)從一些芒果樹上摘下100個(gè)芒果,其質(zhì)量分別在,,,,,(單位:克)中,經(jīng)統(tǒng)計(jì)的頻率分布直方圖如圖所示.
(1)估計(jì)這組數(shù)據(jù)的平均數(shù)(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表);
(2)現(xiàn)按分層抽樣從質(zhì)量為[200,250),[250,300)的芒果中隨機(jī)抽取5個(gè),再從這5個(gè)中隨機(jī)抽取2個(gè),求這2個(gè)芒果都來自同一個(gè)質(zhì)量區(qū)間的概率;
(3)某經(jīng)銷商來收購芒果,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表,用樣本估計(jì)總體,該種植園中還未摘下的芒果大約還有10000個(gè),經(jīng)銷商提出以下兩種收購方案:
方案①:所有芒果以9元/千克收購;
方案②:對(duì)質(zhì)量低于250克的芒果以2元/個(gè)收購,對(duì)質(zhì)量高于或等于250克的芒果以3元/個(gè)收購.
通過計(jì)算確定種植園選擇哪種方案獲利更多.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2﹣y2=1.
(1)過C1的左頂點(diǎn)引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
(2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ;
(3)設(shè)橢圓C2:4x2+y2=1,若M、N分別是C1、C2上的動(dòng)點(diǎn),且OM⊥ON,求證:O到直線MN的距離是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在空間直角坐標(biāo)系中有直三棱柱ABC﹣A1B1C1 , CA=CC1=2CB,則直線BC1與直線AB1夾角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知數(shù)列是等比數(shù)列,且公比為,記是數(shù)列的前項(xiàng)和.
(1)若=1,>1,求的值;
(2)若首項(xiàng),,是正整數(shù),滿足不等式|﹣63|<62,且對(duì)于任意正整數(shù)都成立,問:這樣的數(shù)列有幾個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的兩個(gè)頂點(diǎn)分別為和,兩個(gè)焦點(diǎn)分別為和(),過點(diǎn)的直線與橢圓相交于另一點(diǎn),且.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)直線上有一點(diǎn)()在的外接圓上,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足x2-5ax+4a2<0(其中a>0),q:實(shí)數(shù)x滿足2<x≤5.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若q是p的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com