(本題滿分14分)
已知函數(shù)圖象上一點(diǎn)處的切線方程為.
(Ⅰ)求的值;
(Ⅱ)若方程在內(nèi)有兩個(gè)不等實(shí)根,求的取值范圍(其中為自然對數(shù)的底數(shù));
(Ⅲ)令,若的圖象與軸交于,(其中),的中點(diǎn)為,求證:在處的導(dǎo)數(shù).
解析:(Ⅰ),,.
∴,且. …………………… 2分
解得. …………………… 3分
(Ⅱ),令,
則,令,得(舍去).
在內(nèi),當(dāng)時(shí),, ∴ 是增函數(shù);
當(dāng)時(shí),, ∴ 是減函數(shù) …………………… 5分
則方程在內(nèi)有兩個(gè)不等實(shí)根的充要條件是…………6分
即. ………………………………… 8分
(Ⅲ),.
假設(shè)結(jié)論成立,則有 ……………………………… 9分
①-②,得. w.w.w.k.s.5.u.c.o.m
∴. …………………………………………………………… 10分
由④得,
∴ …………………………………………………… 11分
即,即.⑤
令,(), …………………………………… 12分
則>0.∴在上增函數(shù), ∴, ……… 13分
∴⑤式不成立,與假設(shè)矛盾.
∴. …………………………………………… 14分
w.w.w.k.s.5.u.c.o.m
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過作垂直軸于,動點(diǎn)滿足。
(1)求動點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動點(diǎn)的軌跡上是否存在兩個(gè)不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個(gè)長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com