【題目】已知三棱柱ABC﹣A1B1C1的側棱與底面垂直,體積為 ,底面是邊長為 的正三角形,若P為底面A1B1C1的中心,則PA與平面A1B1C1所成角的大小為( )
A.
B.
C.
D.
【答案】B
【解析】解:如圖所示,
∵AA1⊥底面A1B1C1 , ∴∠APA1為PA與平面A1B1C1所成角,
∵平面ABC∥平面A1B1C1 , ∴∠APA1為PA與平面ABC所成角.
∵ = = .
∴V三棱柱ABC﹣A1B1C1= = ,解得 .
又P為底面正三角形A1B1C1的中心,∴ = =1,
在Rt△AA1P中, ,
∴ .
故選B.
利用三棱柱ABC﹣A1B1C1的側棱與底面垂直和線面角的定義可知,∠APA1為PA與平面A1B1C1所成角,即為∠APA1為PA與平面ABC所成角.利用三棱錐的體積計算公式可得AA1 , 再利用正三角形的性質(zhì)可得A1P,在Rt△AA1P中,利用tan∠APA1= 即可得出.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在半徑為40cm的半圓形(O為圓心)鋁皮上截取一塊矩形材料ABCD,其中A,B在直徑上,點C,D在圓周上、
(1)設AD=x,將矩形ABCD的面積y表示成x的函數(shù),并寫出其定義域;
(2)怎樣截取,才能使矩形材料ABCD的面積最大?并求出最大面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知甲、乙兩名同學在某項測試中得分成績的莖葉圖如圖所示,x1 , x2分別表示知甲、乙兩名同學這項測試成績的眾數(shù),s12 , s22分別表示知甲、乙兩名同學這項測試成績的方差,則有( )
A.x1>x2 , s12<s22
B.x1=x2 , s12>s22
C.x1=x2 , s12=s22
D.x1=x2 , s12<s22
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】分別求出適合下列條件的直線方程: (Ⅰ)經(jīng)過點P(﹣3,2)且在x軸上的截距等于在y軸上截距的2倍;
(Ⅱ)經(jīng)過直線2x+7y﹣4=0與7x﹣21y﹣1=0的交點,且和A(﹣3,1),B(5,7)等距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:θ為第一象限角, =(sin(θ﹣π),1), =(sin( ﹣θ),﹣ ),
(1)若 ∥ ,求 的值;
(2)若| + |=1,求sinθ+cosθ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設直線l的方程為(a+1)x+y+2﹣a=0(a∈R).
(1)若直線l在兩坐標軸上的截距相等,求直線l的方程;
(2)若直線l不經(jīng)過第二象限,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司擬設計一個扇環(huán)形狀的花壇(如圖所示),該扇環(huán)是由以點O為圓心的兩個同心圓弧和延長后通過點AD的兩條線段圍成.設圓弧 、 所在圓的半徑分別為f(x)、R米,圓心角為θ(弧度).
(1)若θ= ,r1=3,r2=6,求花壇的面積;
(2)設計時需要考慮花壇邊緣(實線部分)的裝飾問題,已知直線部分的裝飾費用為60元/米,弧線部分的裝飾費用為90元/米,預算費用總計1200元,問線段AD的長度為多少時,花壇的面積最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)f(x)=|sin(ωx+ )|(ω>1)在區(qū)間[π, π]上單調(diào)遞減,則實數(shù)ω的取值范圍是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com