14.在△ABC中,AB=3,AC=$\sqrt{13}$,B=$\frac{π}{3}$,則△ABC的面積是( 。
A.$\frac{3\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

分析 由已知利用余弦定理可求BC的值,進(jìn)而根據(jù)三角形面積公式即可計(jì)算得解.

解答 解:在△ABC中,∵AB=3,AC=$\sqrt{13}$,B=$\frac{π}{3}$,
∴由余弦定理:AC2=AB2+BC2-2AB•BC•sinB,可得:13=9+BC2-2×3×BC×$\frac{1}{2}$,整理解得:BC=4或-1(舍去).
∴S△ABC=$\frac{1}{2}$×AB×BC×sinB=$\frac{1}{2}×$3×4×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了余弦定理,三角形面積公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果為( 。
A.3B.13C.8D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知數(shù)列{an},a1=1,且an-1-an-1an-an=0(n≥2,n∈N*),記bn=a2n-1a2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn,則滿足不等式Tn<$\frac{8}{17}$成立的最大正整數(shù)n為7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且a+c=2b.
(I)求角B的取值范圍;
(Ⅱ)若A-C=$\frac{π}{3}$,求sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某工廠對(duì)某產(chǎn)品的產(chǎn)量與單位成本的資料分析后有如表數(shù)據(jù):
月     份12345
6
產(chǎn)量x千件234345
單位成本y元/件737271736968
(Ⅰ) 畫出散點(diǎn)圖,并判斷產(chǎn)量與單位成本是否線性相關(guān).
(Ⅱ) 求單位成本y與月產(chǎn)量x之間的線性回歸方程.(其中結(jié)果保留兩位小數(shù))
參考公式:用最小二乘法求線性回歸方程系數(shù)公式:$\widehatb$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_1^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$.
(附:線性回歸方程$\widehaty$=$\widehatb$x+$\widehata$中,b=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)}({y_i}-\overline y)}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$,其中$\overline{x}$,$\overline{y}$為樣本平均值,$\hat b,\hat a$的值的結(jié)果保留二位小數(shù).)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某商店計(jì)劃每天購(gòu)進(jìn)某商品若干件,商店每銷售1件該商品可獲利50元.若供大于求,剩余商品全部退回,但每件商品虧損10元;若供不應(yīng)求,則從外部調(diào)劑,此時(shí)每件調(diào)劑商品可獲利30元.
(Ⅰ)若商店一天購(gòu)進(jìn)該商品10件,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N)的函數(shù)解析式;
(Ⅱ)商店記錄了50天該商品的日需求量(單位:件),整理得如表:
日需求量n89101112
頻數(shù)91115105
①假設(shè)該店在這50天內(nèi)每天購(gòu)進(jìn)10件該商品,求這50天的日利潤(rùn)(單位:元)的平均數(shù);
②若該店一天購(gòu)進(jìn)10件該商品,以50天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)在區(qū)間[400,550]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知向量$\overrightarrow{a}$=(cosα-1,sinα+3)(α∈R),$\overrightarrow$=(4,1),則|$\overrightarrow{a}$+$\overrightarrow$|的最大值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)A和B,系統(tǒng)A和系統(tǒng)B在任意時(shí)刻發(fā)生故障的概率分別為$\frac{1}{8}$和p.若在任意時(shí)刻恰有一個(gè)系統(tǒng)不發(fā)生故障的概率為$\frac{9}{40}$,則p=( 。
A.$\frac{1}{10}$B.$\frac{2}{15}$C.$\frac{1}{6}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.在三棱錐S-ABC中,底面ABC是邊長(zhǎng)為3的等邊三角形,SA⊥SC,SB⊥SC,SA=SB=2,則該三棱錐的體積為$\frac{\sqrt{35}}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案