5.已知數(shù)列{an},a1=1,且an-1-an-1an-an=0(n≥2,n∈N*),記bn=a2n-1a2n+1,數(shù)列{bn}的前n項(xiàng)和為Tn,則滿足不等式Tn<$\frac{8}{17}$成立的最大正整數(shù)n為7.

分析 先根據(jù)遞推公式求出數(shù)列{$\frac{1}{{a}_{n}}$}是以1為首項(xiàng),1為公差的等差數(shù)列,求出an,再求出bn,根據(jù)裂項(xiàng)求和求出Tn,再解不等式即可.

解答 解:∵an-1-an-1an-an=0,
∴$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n-1}}$=1,
∵a1=1,
∴$\frac{1}{{a}_{1}}$=1,
∴數(shù)列{$\frac{1}{{a}_{n}}$}是以1為首項(xiàng),1為公差的等差數(shù)列,
∴$\frac{1}{{a}_{n}}$=1+n-1=n,
即an=$\frac{1}{n}$,
當(dāng)n=1是成立,
∴bn=a2n-1a2n+1=$\frac{1}{2n-1}$•$\frac{1}{2n+1}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=b1+b2+…+bn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)=$\frac{n}{2n+1}$,
∵Tn<$\frac{8}{17}$,
∴$\frac{1}{2}$(1-$\frac{1}{2n+1}$)<$\frac{8}{17}$,
∴2n+1<17,
即n<8,
∴滿足不等式Tn<$\frac{8}{17}$成立的最大正整數(shù)n為7,
故答案為:7.

點(diǎn)評(píng) 本題主要考查了等差數(shù)列的定義、數(shù)列求和問題,考查不等式與數(shù)列的綜合,考查了學(xué)生對(duì)基礎(chǔ)知識(shí)的綜合運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知兩定點(diǎn)A(-2,0)和B(2,0),動(dòng)點(diǎn)P(x,y)在直線l:y=x+3移動(dòng),橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的離心率的最大值為$\frac{2\sqrt{26}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx-x+$\frac{a}{x}$+1(a∈R).
(1)若曲線y=f(x)在x=1處的切線與y軸垂直,求函數(shù)f(x)的極值;
(2)判斷函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)數(shù)列{an}前n項(xiàng)和Sn,且a1=1,{Sn-n2an}為常數(shù)列,則an=$\frac{2}{n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)集合A={x|ex>$\sqrt{e}$},集合B={x|lgx≤-lg2},則A∪B等于(  )
A.RB.[0,+∞)C.(0,+∞)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.定義域?yàn)镽的可導(dǎo)函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x),滿足f(x)>f′(x),且f(0)=2,則不等式f(x)<2ex的解集為( 。
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a3=5,S15=225.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)記bn=2${\;}^{{a}_{n}}$+2n,{bn}的前n項(xiàng)和為Tn,試比較Tn與(4n+$\frac{1}{n}$+1)Sn的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在△ABC中,AB=3,AC=$\sqrt{13}$,B=$\frac{π}{3}$,則△ABC的面積是( 。
A.$\frac{3\sqrt{3}}{4}$B.$\frac{3\sqrt{3}}{2}$C.2$\sqrt{3}$D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.在鈍角△ABC中,已知sin2A+$\frac{{\sqrt{3}}}{6}$sin2A=1,則sinB•cosC取得最小值時(shí),角B等于$\frac{π}{12}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案