某幾何體的三視圖如圖所示,且該幾何體的體積為3,則正視圖中的x=( 。
分析:根據(jù)三視圖判斷幾何體為四棱錐,再利用體積公式求高x即可.
解答:解:根據(jù)三視圖判斷幾何體為四棱錐,其直觀圖是:

V=
1
3
×
1+2
2
×2×x
=3⇒x=3.
故選C.
點評:本題考查由三視圖求幾何體的體積.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知某幾何體的三視圖如圖,則該幾何體的表面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖,它的體積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•大連二模)某幾何體的三視圖如圖所示,根據(jù)圖中尺寸(單位:m),可得該幾何體的體積為
32
3
32
3
m3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•煙臺二模)已知某幾何體的三視圖如圖所示,其中,正視圖,側(cè)視圖均是由三角形與半圓構成,俯視圖由圓與內(nèi)接三角形構成,根據(jù)圖中的數(shù)據(jù)可得此幾何體的體積為
1+
2
π
6
1+
2
π
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知某幾何體的三視圖如圖所示,則幾何體的體積為( 。

查看答案和解析>>

同步練習冊答案