已知數(shù)列{an}的通項公式an=13-3n,則數(shù)列{
1
anan+1
}的前n項和Tn=
 
考點:數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:an=13-3n,可得
1
anan+1
=
1
3
(
1
10-3n
-
1
13-3n
)
,利用“裂項求和”即可得出.
解答: 解:∵an=13-3n,
1
anan+1
=
1
(13-3n)(10-3n)
=
1
3
(
1
10-3n
-
1
13-3n
)
,
∴數(shù)列{
1
anan+1
}的前n項和Tn=
1
3
[(
1
7
-
1
10
)+(
1
4
-
1
7
)
+…+(
1
10-3n
-
1
13-3n
)]

=
1
3
(
1
10-3n
-
1
10
)

=
n
100-30n

故答案為:
n
100-30n
點評:本題考查了數(shù)列的“裂項求和”方法,考查了計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

x是什么實數(shù)時,
4x2-16
有意義?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,且滿足a1=1,nSn+1-(n+1)Sn=
n(n+1)
2
,n∈N*
(1)求a2的值;
(2)求數(shù)列{an}的通項公式;
(3)是否存在正整數(shù)k,使得ak、S2k、a4k成等比數(shù)列?若存在,求k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等比數(shù)列{an}中,已知a4=27a3,則
a2
a1
+
a4
a2
+
a6
a3
+…+
a2n
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了進(jìn)一步激發(fā)同學(xué)們的學(xué)習(xí)熱情,某班級建立了理科.文科兩個學(xué)習(xí)興趣小組,兩組的人數(shù)如下表所示.現(xiàn)采用分層抽樣的方法(層內(nèi)采用簡單隨機(jī)抽樣)從兩組中共抽取3名同學(xué)進(jìn)行測試.
組別
性別
理科文科
51
33
(1)求從理科組抽取的同學(xué)中至少有1名女同學(xué)的概率;
(2)記ξ為抽取的3名同學(xué)中男同學(xué)的人數(shù),求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).
(Ⅰ)求函數(shù)y=g(x)-x 在[0,1]上的最小值;
(Ⅱ)當(dāng)a
1
2
時,函數(shù)t(x)=f(x)+g(x)的圖象記為曲線C,曲線C 在點(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個公共點?若存在,求出所有a的值;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知隨機(jī)變量ξ服從正態(tài)分布N(1,σ2),若p(ξ>2)=0.16,則p{0<ξ<1}=(  )
A、0.68B、0.32
C、0.42D、0.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若執(zhí)行如圖的程序框圖,輸出S的值為4,則判斷框中應(yīng)填入的條件是( 。
A、k<14?
B、k<15?
C、k<16?
D、k<17?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x、y滿足
y≤x
x+2y≤4
y≥-2
,則z=(x-1)2+(y-2)2的最小值為(  )
A、
5
9
B、
5
3
C、
1
5
D、
5
5

查看答案和解析>>

同步練習(xí)冊答案