數(shù)學(xué)公式
(1)寫出a2,a3,a4的值,并猜想數(shù)列{an}的通項公式;
(2)用數(shù)學(xué)歸納法證明你的結(jié)論.

(1)解:∵a1=1,∴,
猜想…(4分)
(2)證明:①n=1時,猜想正確. …(5分)
②假設(shè)n=k時猜想正確,即,…(6分)

這說明,n=k+1時猜想正確. …(11分)
由①②知,…(12分)
分析:(1)根據(jù)所給函數(shù)及遞推關(guān)系式,進(jìn)行計算,從而可猜想數(shù)列{an}的通項公式;
(2)利用數(shù)學(xué)歸納法的證明步驟,進(jìn)行證明,注意利用歸納假設(shè).
點(diǎn)評:本題考查歸納猜想,考查數(shù)學(xué)歸納法證明等式,解題的關(guān)鍵是先猜后證.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=loga(x-3a)(a>0,且a≠1),當(dāng)點(diǎn)P(x,y)是函數(shù)y=f(x)圖象上的點(diǎn)時,點(diǎn)Q(x-2a,-y)是函數(shù)y=g(x)圖象上的點(diǎn).
(1)寫出函數(shù)y=g(x)的解析式;
(2)若當(dāng)x∈[a+2,a+3]時,恒有|f(x)-g(x)|≤1,試確定a的取值范圍;
(3)把y=g(x)的圖象向左平移a個單位得到y(tǒng)=h(x)的圖象,函數(shù)F(x)=2a1-h(x)-a2-2h(x)+a-h(x),(a>0,且a≠1)在[
1
4
,4]
的最大值為
5
4
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,f(x)=
axa+x
a1=1,an+1=f(an),n∈N*

(1)寫出a2,a3,a4的值,并猜想數(shù)列{an}的通項公式;
(2)用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)寫出下列函數(shù)的單調(diào)區(qū)間:①y=-x2+2|x|+1;②y=|-x2+2x+3|
(2)函數(shù)f(x)=
ax2+1,x≥0
(a2-1)eax,x<0
在R上單調(diào),則a的取值范圍是
(-∞,-
2
]∪(1,
2
]
(-∞,-
2
]∪(1,
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設(shè)有n(n∈N*)個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A,B,C可供使用.

現(xiàn)用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數(shù),回答下列問題:
(1)寫出a1,a2,a3,并求出an;
(2)記bn=an+1,求和Sn=
 
1≤i≤j≤n
bibj(i,j∈N*);
(其中
 
1≤i≤j≤n
bibj
表示所有的積bibj(1≤i≤j≤n)的和)
(3)證明:
S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
4
-
3
16
+
3
16
1
2n
(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某國采用養(yǎng)老儲備金制度.公民在就業(yè)的第一年就交納養(yǎng)老儲備金,數(shù)目為a,以后每年交納的數(shù)目均比上一年增加d(d>0),因此,歷年所交納的儲備金數(shù)目a1,a2,…是一個公差為d的等差數(shù)列.與此同時,國家給予優(yōu)惠的計息政策,不僅采用固定利率,而且計算復(fù)利.這就是說,如果固定年利率為r(r>0),那么,在第n年末,第l年所交納的儲備金就變?yōu)?span id="3zwdki5" class="MathJye">a1(1+r)n-1,第2年所交納的儲備金就變?yōu)?span id="sby6zqd" class="MathJye">a2(1+r)n-2…以Tn表示到第n年末所累計的儲備金總額.
(1)寫出Tn與Tn-1(n≥2)的遞推關(guān)系式;
(2)求證:Tn=An+Bn,其中{An}是一個等比數(shù)列,{Bn}是一個等差數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案