精英家教網 > 高中數學 > 題目詳情
古代印度婆羅門教寺廟內的僧侶們曾經玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有n(n∈N*)個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A,B,C可供使用.

現用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數,回答下列問題:
(1)寫出a1,a2,a3,并求出an;
(2)記bn=an+1,求和Sn=
 
1≤i≤j≤n
bibj(i,j∈N*);
(其中
 
1≤i≤j≤n
bibj
表示所有的積bibj(1≤i≤j≤n)的和)
(3)證明:
S1
S2
+
S2
S3
+…+
Sn
Sn+1
n
4
-
3
16
+
3
16
1
2n
(n∈N*)
分析:(1)由題意要將n個圓盤全部轉移到C柱上,只需先將上面n-1個圓盤轉移到B柱上,需要an-1次轉移,然后將最大的那個圓盤轉移到C柱上,需要一次轉移,再將B柱上的n-1個圓盤轉移到C柱上,需要an-1次轉移,所以有an=2an-1+1,利用構造法可求an;
(2)由第(1)問解答知bn=an+1=2nSn=
1≤i≤j≤n
bibj=
1
2
[(b1+b2+…+bn)2+(
b
2
1
+
b
2
2
+…+
b
2
n
)]
將bn代入利用等比數列求和公式求和即得;
(3)由(2)求得和cn=
2n-1
2n+2-1
,利用利用放縮法結合等比數列求和可證.
解答:解:(1)a1=1,a2=3,a3=7,
事實上,要將n個圓盤全部轉移到C柱上,只需先將上面n-1個圓盤轉移到B柱上,
需要an-1次轉移,然后將最大的那個圓盤轉移到C柱上,
需要一次轉移,再將B柱上的n-1個圓盤轉移到C柱上,
需要an-1次轉移,所以有an=2an-1+1
則an+1=2(an-1+1)⇒an+1=2n
所以an=2n-1
(2)由第(1)問解答知bn=an+1=2n
Sn=
1≤i≤j≤n
bibj=
1
2
[(b1+b2+…+bn)2+(
b
2
1
+
b
2
2
+…+
b
2
n
)]

=
1
2
[(2+22+…+2n)2+(22+24+26+…+22n)]

=
1
2
[(2n+1-2)2+
4
3
(4n-1)]
=
4
3
(2n-1)(2n+1-1)(n∈N*)

(3)令cn=
Sn
Sn+1
(n∈N*)
,則由(2)得:
cn=
2n-1
2n+2-1
=
1
4
2n-
1
4
-
3
4
2n-
1
4
=
1
4
(1-
3
4
2n-
1
4
)=
1
4
-
3
16
1
2n-
1
4
1
4
-
3
16
1
2n

所以c1+c2+c3+…+cn
n
4
-
3
16
•(
1
2
+
1
22
+
1
23
+…+
1
2n
)=
n
4
-
3
16
+
3
16
1
2n
點評:本題的(1)問關鍵是從特殊中發(fā)現一般性的規(guī)律,考查構造法求數列的通項;(3)問體現等價轉化的數學思想,同時應注意放縮法的運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

古代印度婆羅門教寺廟內的僧侶們曾經玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有n(n∈N*)個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.現用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數,回答下列問題:
(1)寫出a1,a2,a3,并求出an;
(2)記bn=an+1,求和Sn=
1≤i≤j≤n
bibj
(i,j∈N*);(其中
1≤i≤j≤n
bibj
表示所有的積bibj(1≤i≤j≤n)的和)
證明:
1
7
S1
S2
+
S1S3
S2S4
+…+
S1S3S2n-1
S2S4S2n
4
21
(n∈N*).

查看答案和解析>>

科目:高中數學 來源: 題型:

古代印度婆羅門教寺廟內的僧侶們曾經玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有個圓盤依其半徑大小,大的在下,小的在上套在柱上,現要將套在柱上的盤換到柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子可供使用.

現用表示將個圓盤全部從柱上移到柱上所至少需要移動的次數,回答下列問題:

(1)寫出 并求出

(2)記 求和(其中表示所有的積的和)

(3)證明:

查看答案和解析>>

科目:高中數學 來源:2010年重慶市西南師大附中高三下學期五月月考數學(理) 題型:解答題

(本小題滿分12分)
古代印度婆羅門教寺廟內的僧侶們曾經玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有n)個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.

現用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數,回答下列問題:
(1)   寫出a1a2,a3,并求出an;
(2)   記,求和);
(其中表示所有的積的和)
(3)   證明:

查看答案和解析>>

科目:高中數學 來源:2010-2011學年重慶市高三5月月考考試理科數學 題型:解答題

本小題滿分12分)

古代印度婆羅門教寺廟內的僧侶們曾經玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有個圓盤依其半徑大小,大的在下,小的在上套在A桿上,現要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何不允許將大盤套在小盤上面,假定有三柱子A,B,C可供使用。

現用表示將n個圓盤全部從A柱上移到C上所至少需要移動的次數,回答下列問題:

   (1)寫出,并求出

   (2)記,求和

       (其中表示所有的積的和)

   (3)證明:

 

查看答案和解析>>

同步練習冊答案