15.已知點(diǎn)A(-3,4)B(3,2),過點(diǎn)P(1,0)的直線l與線段AB有公共點(diǎn),則直線l的傾斜角的取值范圍45°≤α≤135°.

分析 由題意畫出圖形,求出P與線段AB端點(diǎn)連線的傾斜角得答案.

解答 解:如圖,當(dāng)直線l過B時(shí)設(shè)直線l的傾斜角為α(0≤α<π),
則tanα=$\frac{2-0}{3-1}$=1,α=45°
當(dāng)直線l過A時(shí)設(shè)直線l的傾斜角為β(0≤β<π),
則tanβ=$\frac{4-0}{-3-1}$=-1,β=135°,
∴要使直線l與線段AB有公共點(diǎn),
則直線l的傾斜角α的取值范圍是45°≤α≤135°.
故答案為45°≤α≤135°.

點(diǎn)評 本題考查了直線的傾斜角,體現(xiàn)了數(shù)形結(jié)合的解題思想方法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知a=$\sqrt{0.5}$,b=20.5,c=0.50.2,則a,b,c三者的大小關(guān)系是( 。
A.b>c>aB.b>a>cC.a>b>cD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)集合A={1,2,3,4},B={1,3,5,7},則A∩B={1,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知{an}為等差數(shù)列,a1+a3+a5=105,a2+a4+a6=99,則數(shù)列{an}的公差d=( 。
A.-2B.-1C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知全集為R,集合A={x|2≤x<4},B={x|3x-7≥8-2x},C={x|x<a}
(1)求A∩B;
(2)求A∪(∁RB);
(3)若A⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.若函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時(shí),f(x)=x2+2x.
(1)寫出函數(shù)f(x)(x∈R)的解析式.
(2)若函數(shù)g(x)=f(x)+(4-2a)x+2(x∈[1,2]),求函數(shù)g(x)的最小值h(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a>0,b>0,a,b,-2成等差數(shù)列,又a,b,-2適當(dāng)排序后也可成等比數(shù)列,則a+b的值等于( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.一只船自西向東勻速航行,上午10時(shí)到達(dá)燈塔P的南偏西75°距燈塔64海里的M處,下午2時(shí)到達(dá)這座燈塔東南方向的N處,則這只船航行的速度(單位:海里/小時(shí))( 。
A.$32\sqrt{6}$B.$8\sqrt{6}$C.$32\sqrt{3}$D.$8\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在如圖所示的三棱錐ABC-A1B1C1中,D,E分別是BC,A1B1的中點(diǎn).
(1)求證:DE∥平面ACC1A1;
(2)若△ABC為正三角形,且AB=AA1,M為AB上的一點(diǎn),$AM=\frac{1}{4}AB$,求直線DE與直線A1M所成角的正切值.

查看答案和解析>>

同步練習(xí)冊答案