設(shè)f(x)=,若f(f(1))=1,則a=________.
1
f(1)=lg 1=0,=t3=a3,
則f(f(1))=f(0)=a3=1,∴a=1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市環(huán)保部門對市中心每天環(huán)境污染情況進行調(diào)查研究,發(fā)現(xiàn)一天中環(huán)境污染指數(shù)與時刻(時)的關(guān)系為,,其中是與氣象有關(guān)的參數(shù),且,用每天的最大值作為當(dāng)天的污染指數(shù),記作.
(1)令,求的取值范圍;
(2)按規(guī)定,每天的污染指數(shù)不得超過2,問目前市中心的污染指數(shù)是否超標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用水清洗一堆蔬菜上殘留的農(nóng)藥,對用一定量的水清洗一次的效果作如下假定:用一個單位的水可洗掉蔬菜上殘留農(nóng)藥的,用水越多洗掉的農(nóng)藥量也越多,但總還有農(nóng)藥殘留在蔬菜上.設(shè)用單位量的水清洗一次以后,蔬菜上殘留的農(nóng)藥量與本次清洗前殘留的農(nóng)藥量之比為函數(shù)
⑴試規(guī)定的值,并解釋其實際意義;
⑵試根據(jù)假定寫出函數(shù)應(yīng)滿足的條件和具有的性質(zhì);
⑶設(shè),現(xiàn)有單位量的水,可以清洗一次,也可以把水平均分成兩份后清洗兩次.試問用那種方案清洗后蔬菜上殘留的農(nóng)藥量比較少?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如果n件產(chǎn)品中任取一件樣品是次品的概率為,則認為這批產(chǎn)品中有件次品。某企業(yè)的統(tǒng)計資料顯示,產(chǎn)品中發(fā)生次品的概率p與日產(chǎn)量n滿足,有已知每生產(chǎn)一件正品可贏利a元,如果生產(chǎn)一件次品,非但不能贏利,還將損失元().
(1)求該企業(yè)日贏利額的最大值;
(2)為保證每天的贏利額不少于日贏利額最大值的50%,試求該企業(yè)日產(chǎn)量的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若定義在R上的函數(shù)滿足:,且對任意滿足,
則不等式的解集為( ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出定義:若函數(shù)f(x)在D上可導(dǎo),即f′(x)存在,且導(dǎo)函數(shù)f′(x)在D上也可導(dǎo),則稱f(x)在D上存在二階導(dǎo)函數(shù),記f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數(shù).以下四個函數(shù)在(0,)上不是凸函數(shù)的是________.
①f(x)=sim x+cos x     ②f(x)=ln x-2x
③f(x)=x3+2x-1       ④f(x)=x·ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)內(nèi)有且僅有兩個不同的零點,則實數(shù)的取值范圍是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某電信公司推出兩種手機收費方式:A種方式是月租20元,B種方式是月租0元.一個月的本地網(wǎng)內(nèi)通話時間t(分鐘)與電話費s(元)的函數(shù)關(guān)系如圖所示,當(dāng)通話150分鐘時,這兩種方式電話費相差(  )
A.10元B.20元C.30元D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè),若,則       

查看答案和解析>>

同步練習(xí)冊答案