(本小題滿分13分)已知數(shù)列的前項(xiàng)和是,且 .
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,求數(shù)列的前項(xiàng)和 .

(Ⅰ); (Ⅱ)。

解析試題分析:(I)先令n=1,得,從而得到.
然后再令時(shí),由得:,兩式相減得:
,從而確定為等比數(shù)列,問題得解.
(II)在(I)的基礎(chǔ)上,可求出,顯然應(yīng)采用錯(cuò)位相減的方法求和即可.
(Ⅰ)當(dāng)時(shí),  ,,∴; ………… 2分
當(dāng)時(shí),由得:
兩式相減得:
,又  ,       ……………… 5分
∴數(shù)列是以為首項(xiàng),為公比的等比數(shù)列.       ………………… 6分
                ………………… 7分                 
(Ⅱ)由(Ⅰ)知 ,                         ………………… 8分
     …………………①
    …………②
由①-②得:
…………………9分
                       ………………… 12分
       ………………… 13分
考點(diǎn): 由an與Sn的關(guān)系求出an,等比數(shù)列的定義,通項(xiàng)公式,錯(cuò)位相減法求和.
點(diǎn)評(píng):(I)再由Sn求an時(shí),應(yīng)先確定a1,然后再根據(jù),求時(shí),an.
(II)當(dāng)一個(gè)數(shù)列的通項(xiàng)是一個(gè)等差數(shù)列與一個(gè)等比數(shù)列積時(shí),可以采用錯(cuò)位相減法求和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知數(shù)列的前n項(xiàng)和滿足(>0,且)。數(shù)列滿足
(I)求數(shù)列的通項(xiàng)。
(II)若對(duì)一切都有,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
已知數(shù)列{}滿足,
(I)寫出,并推測(cè)的表達(dá)式;
(II)用數(shù)學(xué)歸納法證明所得的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知曲線,數(shù)列的首項(xiàng),且當(dāng)時(shí),點(diǎn)恒在曲線上,數(shù)列滿足。
(1)試判斷數(shù)列是否是等差數(shù)列?并說(shuō)明理由;
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè)數(shù)列滿足,試比較數(shù)列的前項(xiàng)和與2的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和為,滿足
(1)求;
(2)令,求數(shù)列的前項(xiàng)和.
(3)設(shè),若對(duì)任意的正整數(shù),均有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)(注意:在試題卷上作答無(wú)效)
已知曲線,從上的點(diǎn)軸的垂線,交于點(diǎn),再?gòu)狞c(diǎn)軸的垂線,交于點(diǎn),設(shè)

(1)求數(shù)列的通項(xiàng)公式;
(2)記,數(shù)列的前項(xiàng)和為,試比較的大小;
(3)記,數(shù)列的前項(xiàng)和為,試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某少數(shù)民族的刺繡有著悠久的歷史,如下圖(1)、(2)、(3)、(4)為她們刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個(gè)圖形包含個(gè)小正方形.

(1)求出的值;
(2)利用合情推理的“歸納推理思想”,歸納出之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出的表達(dá)式;
(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知數(shù)列是公差為2的等差數(shù)列,的前n項(xiàng)和,則=     

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

設(shè),則下列不等式一定成立的是(   )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案