4.已知α為第四象限的角,則tan$\frac{α}{2}$( 。
A.一定是正數(shù)B.一定是負(fù)數(shù)
C.正數(shù)、負(fù)數(shù)都有可能D.有可能是零

分析 由2kπ-$\frac{π}{2}$<α<2kπ,k∈Z,求得kπ-$\frac{π}{4}$<$\frac{α}{2}$<kπ,故$\frac{α}{2}$為第二或第四象限角,由此可得tan$\frac{α}{2}$的符號(hào).

解答 解:∵已知α為第四象限的角,即2kπ-$\frac{π}{2}$<α<2kπ,k∈Z,∴kπ-$\frac{π}{4}$<$\frac{α}{2}$<kπ,故 $\frac{α}{2}$為第二或第四象限角,
則tan$\frac{α}{2}$一定小于零,
故選:B.

點(diǎn)評(píng) 本題主要考查象限角的表示方法,正切函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知sin53.13°=0.8,求cos143.13°和cos216.87°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,已知在四棱錐P-ABCD中,CD∥AB,AD⊥AB,BC⊥PC,且AD=DC=PA=$\frac{1}{2}$AB=1
(1)求證:BC⊥平面PAC;
(2)試在線段PB上找一點(diǎn)M,使CM∥平面PAD,并說明理由;
(3)若點(diǎn)M是由(2)中確定的,且PA⊥AB,求四面體MPAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)f(x)=x2對(duì)于任意的x,y∈R都有( 。
A.f(x+y)=f(x)f(y)B.f(xy)=f(x)+f(y)C.f(xy)=f(x)f(y)D.f(x+y)=f(x)+f(y)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,直線PD⊥平面ABCD,ABCD為正方形,PD=AD,求直線PA與BD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.(1)設(shè)a,b,c為正數(shù),且a+2b+3c=13,則$\sqrt{3a}$+$\sqrt{2b}$+$\sqrt{c}$的最大值為$\frac{13\sqrt{3}}{3}$;
(2)設(shè)正實(shí)數(shù)a,b,c滿足abc≥1,求$\frac{{a}^{2}}{a+2b}$+$\frac{^{2}}{b+2c}$+$\frac{{c}^{2}}{c+2a}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知i虛數(shù)單位,則($\frac{1+2i}{1-i}$)2-($\frac{2-i}{1+i}$)2=( 。
A.-3+4iB.0C.-4+3iD.-4-3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a為正實(shí)數(shù),則“a≥1”是“$a+\frac{1}{a}≥2$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.橢圓2x2+y2=8的長(zhǎng)軸長(zhǎng)是( 。
A.2B.$2\sqrt{2}$C.4D.$4\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案