13.設(shè)a為正實(shí)數(shù),則“a≥1”是“$a+\frac{1}{a}≥2$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 根據(jù)基本不等式的性質(zhì)結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.

解答 解:若a為正實(shí)數(shù),則$a+\frac{1}{a}≥2$恒成立,當(dāng)且僅當(dāng)a=$\frac{1}{a}$,即a=1時(shí),取等號(hào),
故則“a≥1”是“$a+\frac{1}{a}≥2$”的充分不必要條件,
故選:A

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)基本不等式的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若直三棱柱ABC-A1B1C1的六個(gè)頂點(diǎn)都在直徑為$\sqrt{61}$的球面上,且AB=3,AC=4,BC=5,點(diǎn)D是棱BB1的中點(diǎn),則AD與平面BCC1B1所成的角的正弦值為$\frac{2\sqrt{2}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知α為第四象限的角,則tan$\frac{α}{2}$( 。
A.一定是正數(shù)B.一定是負(fù)數(shù)
C.正數(shù)、負(fù)數(shù)都有可能D.有可能是零

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓C與y軸相切,圓心在直線2x-y=0上,且直線x-y=0被圓C截得的弦長(zhǎng)為2$\sqrt{2}$.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)已知兩定點(diǎn)A(0,1),B(0,-1),P為圓C上的動(dòng)點(diǎn),求|PA|2+|PB|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若點(diǎn)(16,tanθ)在函數(shù)y=log2x的圖象上,則$\frac{1+cos2θ+8si{n}^{2}θ}{sin2θ}$=( 。
A.$\frac{20\sqrt{3}}{3}$B.$\frac{65}{4}$C.4D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.計(jì)算:
(1)${({2\frac{7}{9}})^{0.5}}+{0.1^{-2}}+{({2\frac{10}{27}})^{-\frac{2}{3}}}-3{π^0}+\frac{37}{48}$
(2)$lg25+\frac{2}{3}lg8+lg5•lg20+{({lg20})^2}-2lg20$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線y2=2px(p>0)上有A、B兩點(diǎn),且OA⊥OB,直線AB與x軸相交于點(diǎn)P,則點(diǎn)P的坐標(biāo)為(2p,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.命題“若x=300°,則cosx=$\frac{1}{2}$”的逆否命題是( 。
A.若cosx=$\frac{1}{2}$,則x=300°B.若x=300°,則cosx≠$\frac{1}{2}$
C.若cosx≠$\frac{1}{2}$,則x≠300°D.若x≠300°,則cosx≠$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題為“p或q”的形式的是( 。
A.$\sqrt{5}$>2B.2是4和6的公約數(shù)C.∅≠{0}D.A⊆B

查看答案和解析>>

同步練習(xí)冊(cè)答案